RU2157512C1 - Микрорезонаторный волоконно-оптический датчик магнитных полей - Google Patents

Микрорезонаторный волоконно-оптический датчик магнитных полей Download PDF

Info

Publication number
RU2157512C1
RU2157512C1 RU99127776A RU99127776A RU2157512C1 RU 2157512 C1 RU2157512 C1 RU 2157512C1 RU 99127776 A RU99127776 A RU 99127776A RU 99127776 A RU99127776 A RU 99127776A RU 2157512 C1 RU2157512 C1 RU 2157512C1
Authority
RU
Russia
Prior art keywords
fiber
microresonator
magnetic field
autocollimator
optic
Prior art date
Application number
RU99127776A
Other languages
English (en)
Inventor
Я.В. Малков
В.Д. Бурков
В.И. Кузнецова
В.Т. Потапов
А.В. Гориш
А.Н. Котов
Ф.А. Егоров
Original Assignee
Московский государственный университет леса
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный университет леса filed Critical Московский государственный университет леса
Priority to RU99127776A priority Critical patent/RU2157512C1/ru
Application granted granted Critical
Publication of RU2157512C1 publication Critical patent/RU2157512C1/ru

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

Использование: в волоконно-оптических преобразователях физических величин с использованием микромеханических резонаторов, возбуждаемых светом. Сущность изобретения: в волоконно-оптическом датчике магнитных полей коллимирование луча, взаимодействующего с микрорезонатором 5, осуществляется с помощью волоконного автоколлиматора 3. Изменение параметров измеряемого магнитного поля сопряжено с изменением характеристик микрорезонатора 5, приводящих к изменению резонансной частоты в системе волоконно-оптический лазер -микрорезонатор. Волоконный автоколлиматор 3 выполнен в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной непосредственно на торце этого световода. Технический результат: разработка микрорезонаторного волоконно-оптического датчика физических величин для измерения магнитных полей. 1 с. и 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к волоконно-оптическим преобразователям физических величин (температуры, давления, электромагнитных нолей и др.) с использованием микромеханических резонаторов (МР), возбуждаемых светом.
Конструктивно МР, как правило, представляют собой микробалку, микроконсоль, микромембрану и т.п., изготовленные из монокристаллов кремния или пьезокварца методами анизотропного травления, плазмохимии монокристаллических материалов. Внешнее воздействие деформирует подложку МР и через изменение внутреннего механического напряжения изменяет резонансную частоту акустических колебаний, возбуждаемых светом.
В связи с малой амплитудой колебаний МР (~0,1 мкм) в волоконно-оптических датчиках (ВОД) физических величин применяются как интерферометрический метод съема информации о резонансной частоте МР с помощью интерферометра Фабри-Перо, так и частотный.
Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является ВОД физических величин с оптическим методом возбуждения колебаний МР и частотным съемом информации (см. патент РФ N 2135957, БИ N 24 от 27.06.99 г.).
Устройство содержит волоконно-оптический лазер (ВОЛ), МР, выполненный в виде микромостика (микромостика на мембране), коллиматор, выполненный в виде градиентной стержневой линзы (ГСЛ) в четверть периода, формирующей Гауссовы пучки, одномодовый изотропный световод, полупрозрачное зеркало, в качестве которого служит граница раздела световод-воздух с коэффициентом отражения R1-3,2%, фотоприемник, анализатор спектра, полупроводниковый лазер накачки на длине волны
Figure 00000002
=0,98 мкм.
В известном техническом решении один торец световода ВОЛ оптически сопряжен с коллиматором, расположенным между этим торцом и МР, а второй торец является выходным и связан с анализатором спектра через фотоприемник, при этом отражающая поверхность МР образует с выходным торцом световода двухзеркальный оптический резонатор ВОЛ, а отражающая поверхность МР в исходном положении ориентирована к оптической оси коллимированного луча под некоторым заданным углом
Figure 00000003

Дискретная форма выходного сигнала ВОД, большая протяженность канала передачи и высокая точность измерения резонансной частоты делают этот тип ВОД перспективным при его использовании в системах измерения физических величин.
Недостатком данного решения является следующее. Наличие в конструкции ВОД автоколлиматора на основе стержневых линз снижает стабильность параметров коллимированного пучка в условиях воздействия на автоколлиматор таких дестабилизирующих факторов, как изменение температуры, давления, ускорения и др. Нестабильность параметров коллимированного пучка ухудшает такие характеристики микрорезонаторных ВОД физических величин, как надежность, точность, быстродействие, а также снижает эффективность взаимодействия ВОЛ с МР за счет нестабильности
Figure 00000004
угла начальной ориентации оптической оси коллимированного пучка относительно нормали к отражающей поверхности МР. Кроме того, в известном техническом решении конструкция и технология изготовления МР ограничивают возможность его применения для измерения параметров магнитных полей. Действительно, выполненный из монокристалла кремния методом анизотропного травления и плазмохимии МР также снабжен дополнительным покрытием из металла, которое выполняют роль второго зеркала резонатора ВОЛ (первое - граница раздела световод-воздух на входе фотоприемника). Такой МР мало эффективен для измерения напряженности магнитного поля.
Задача, решаемая данным изобретением, заключается в разработке микрорезонаторного волоконно-оптического датчика физических величин для измерения магнитных полей, на основе применения магнитосилового эффекта, возникающего при взаимодействии измеряемого магнитного поля с микрорезонатором, что обуславливает изменение его характеристик и, следовательно, изменение резонансной частоты в системе ВОЛ-МР.
Решение поставленной задачи обеспечивается тем, что в микрорезонаторном волоконно-оптическом датчике магнитных полей, включающем волоконно-оптический лазер в качестве источника оптического излучения, микрорезонатор с зеркальным отражателем, автоколлиматор, фотоприемник, анализатор спектра, в качестве автоколлиматора использован волоконный автоколлиматор, выполненный в виде одномодового кварцевого световода со сферической линзой, сформированной на торце световода, а микрорезонатор выполнен в виде пленки из магнитного материала, а также тем, что в качестве магнитного материала микрорезонатора использовано спиновое стекло, а также тем, что в качестве магнитного материала микрорезонатора использован монокристалл железоиттриевого граната.
Сущность предлагаемого технического решения заключается в разработке волоконно-оптического датчика магнитных полей, в котором коллимирование луча, взаимодействующего с МР, осуществляется с помощью волоконного автоколлиматора, а изменение параметров измеряемого магнитного поля сопряжено с изменением характеристик МР, приводящих к изменению резонансной частоты в системе ВОЛ-МР (при осуществлении модуляции добротности двухзеркального оптического резонатора вследствие фотоиндуцированных угловых отклонений одного из зеркал резонатора ВОЛ, в качестве которого служит МР).
Предлагаемый волоконный автоколлиматор выполнен в виде участка одномодового кварцевого световоде со сферической микролинзой, сформированной непосредственно на торце этого световода.
В Гауссовом приближении зависимость параметров коллимированного пучка d,
Figure 00000005
от геометрических размеров микролинзы и характеристики световода описывается выражениями:
Figure 00000006

где d - диаметр коллимированного пучка, формируемого микролинзой на ее выходе;
θ0 - угол расходимости коллимированного пучка;
dс - диаметр световедущей сердцевины световода;
NA - числовая апертура одномодового световода;
l - длина микролинзы;
n - показатель преломления материала микролинзы.
Радиус микролинзы R рассчитывается по формуле
Figure 00000007
(2)
которая подучена из условия, что торец световода располагается в фокальной плоскости микролинзы, а показатель преломления среды (воздуха), в которой распространяется коллимированный пучок, принят равным 1. Оптимальное значение расстояния L между микролинзой и МР определяется экспериментально из условия максимального значения отношения сигнал-шум.
Стабильность параметров коллимированного пучка обеспечивается, во-первых, конструкцией автоколлиматора, представляющей собой монолитную структуру из одномодового материала, в которой соединение кварцевого световода с микролинзой из кварцевого стекла осуществляется с помощью сварки в электрической дуге, позволяющей получить высокую механическую прочность и эффективное оптическое сопряжение элементов, во-вторых, слабым влиянием дестабилизирующих факторов (изменений температуры, давления, электромагнитных полей и др.) на показатель преломления и геометрические размеры микролинзы.
Так, в соответствии с формулой (1), исходя из известных значений термооптических и фотоупругих характеристик для кварцевого стекла (световода), получим оценки:
Figure 00000008

Figure 00000009

Это значит, что в диапазоне температур 0...800oC изменения параметров коллимированного пучка не превышают соответственно 5 и 3%.
Далее отметим, что при данном способе возбуждения автоколебаний в системе ВОЛ-МР основным фактором, определяющим эффективность взаимодействия ВОЛ и МР, является угол расходимости пучка θ0, определяющий ширину интервала Δθu= θ21, а именно, чем меньше угол расходимости θ0, тем больше ширина интервала Δθu, и наоборот.
В предлагаемой конструкции автоколлиматора АК обеспечивается возможность вариации значений θ0 в широких пределах, что приводит к существенному увеличению ширины зоны существования устойчивых автоколебаний в системе ВОЛ-MP и, следовательно, повышает эффективность их взаимодействия и улучшает технические характеристики устройства: точность, надежность, стабильность.
Для иллюстрации возможностей волоконного АК ниже приводятся оценки параметров коллимированных пучков (d, θ0) при некоторых типовых значениях геометрических размеров волоконных АК и характеристик одномодового световода.
Имеем, при
- диаметре микролинзы, D (мкм), 200...300;
- длине микролинзы, l (мкм), 700...900;
- радиусе микролинзы, R (мкм), 200...300;
- параметрах одномодового световода ( λ = 1,55 мкм, NA - 0,15, dс = 6,5 мкм)
следующие параметры коллимированных пучков:
- диаметр коллимированного пучка, формируемого микролинзой на ее выходе (мкм), d - 50...150,
- угол расходимости коллимированного пучка (рад)
Q0 = 8 • 10-3...2 • 10-2
Что касается сущности магнитосилового эффекта и его использования, то здесь следует отметить следующее.
Дифференциальное уравнение изгибных колебаний МР, находящегося под действием продольной силы Fx, направленной вдоль его длины, в общем случае эаписывается в виде
Figure 00000010

где μ - масса единицы длины МР;
E - модуль Юнга МР,
I - момент инерции поперечного сечения МР.
Представляя изгибные колебания y (x, t) в виде φ(x)liωt, получаем:
φIV-ρφII-K4φ = 0, (4)
где
Figure 00000011

здесь ωк - частота собственных колебаний МР.
Решение уравнения (3) с учетом (4) требует введения соответствующих граничных условий.
Рассмотрим в качестве примера МР, выполненный в двух модификациях: в виде микроконсоли и микробалки. Для микроконсоли граничные условия в рассматриваемом случае можно представить как
Figure 00000012

где l - длина микроконсоли.
При размещении МР в виде микроконсоли (из магнитомягкого аморфного сплава) во внешнее магнитное поле с напряженностью Hx под действием силы Fx изменяются характеристики МР, что приводит к изменению частоты собственных колебаний МР, описываемых выражением (3).
Если магнитное поле намагничивает консоль до насыщения, то
Fx = S•Ms•Hx,
где Ms - намагниченность насыщения;
S - площадь поперечного сечения консоли (a x d),
где a - ширина, d - толщина консоли, Hx - напряженность магнитного поля.
Решая (3) совместно с (5) в модернизованных функциях Крылова I (Бабанов И. Н. "Теория колебаний", М. , Наука, стр.29), получаем трансцендентное уравнение, из которого следует, что при Fxl2/EI≤1 частота собственных колебаний МР зависит линейно от величины Hx:
Figure 00000013

При Hx≤HA (где HA - поле анизотропии, параметр ферромагнетика) эффект магнитосилового взаимодействия мал, и в выражении (6) можно пренебречь соответствующим членом в квадратных скобках по сравнению с единицей. Тогда частота собственных колебаний МР будет изменяться, главным образом, за счет изменения модуля упругости E от Hx:
Figure 00000014

При использовании МР в виде балки, закрепленной с двух сторон, ход рассуждений аналогичен. Применительно к балке, краевые условия запишутся в виде:
Figure 00000015

Решая уравнение (3) с учетом (8) в функциях Крылова [I], находим, что частота f собственных колебаний МР, нагруженного продольной силой Fx, связана с частотой ненагруженного резонатора f0 следующим образом:
f2= f 2 0 (1+αFxl2/EJ) (9)
Константа α зависит от Fx и геометрических размеров МР (l, a, d). При
Figure 00000016
значение α практически постоянно и равно α = 0,0246. В этом приближении уравнение (9) можно линеаризовать с точностью 0,5%, что дает следующую зависимость f(Fx):
Figure 00000017

где ρ - плотность образца МР.
При увеличении продольной силы Fx влияние упругих свойств балки на изгибную жесткость уменьшается, и в пределе при Fx_→ ∞ формула (10) переходит в формулу для частоты колебаний струны с α = 0,0197.
Предлагаемый принцип построения волоконно-оптического датчика магнитных полей позволяет реализовать измерительное устройство также на основе магнитострикции. При этом могут быть использованы известные модификации конструкции МР: микроконсоль, микромостик на мембране.
На чертеже представлена схема микрорезонаторного волоконно-оптического датчика магнитного поля нового типа, где - ВОЛ, активированный эрбием, накачка которого осуществляется на длине волны λн = 0,98 мкм, 2 - одномодовый световод, 3 - АК, выполненный в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной непосредственно на торце световода, 4 - зеркало M1 оптического резонатора, в качестве которого служит граница раздела световод-воздух, 5 - МР, представляющий собой ленту (пленку) из магнитомягкого аморфного сплава (например, спиновое стекло (металл-глас), монокристалл железоиттриевого граната) в виде микроконсоли (микробалки), 6 - угол между нормалью к отражающей поверхности МР и оптической осью пучка, сформированного волоконным АК 3, 7 - зеркало M2, в качестве которого использована отражающая поверхность МР, l - длина микролинзы, D - диаметр микролинзы, d - диаметр коллимированного пучка, H - расстояние между микролинзой и МР, 8 - микролинза, R - радиус микролинзы, 9 - фотоприемник, 10 - анализатор спектра, Hx магнитное измеряемое поле.
Устройство работает следующим образом.
При размещении датчика в измеряемое магнитное поле Hx в результате магнитосилового взаимодействия поля и МР 5 изменяются характеристики МР 5. При этом продольная ось МР 5 и направление магнитных сил Fx совпадают. Независимо от конфигурации МР (консоль, балка) изменение характеристик МР приводит к изменению его собственной резонансной частоты. В системе ВОЛ 1-МР 5 устанавливается автоколебательный режим с частотой колебаний F, совпадающей с резонансной частотой i-й моды колебаний МР: fi = F, где i = 1,2,...m. При этом автоколебательный режим в системе ВОЛ-МР осуществляется за счет модуляции амплитуды коэффициента отражения оптического резонатора ВОЛ вследствие фотоиндуцированных угловых отклонений зеркала, в качестве которого служит МР.
Таким образом, предложен новый принцип построения микрорезонаторного волоконно-оптического ВОД магнитного поля, содержащего волоконный автоколлиматор, обеспечивающий высокую стабильность параметров коллимированного пучка в широком диапазоне воздействия дестабилизирующих факторов.
Изобретение позволяет получить следующие положительные свойства:
- снижение массы и габаритов ВОД;
- повышение надежности, точности, стабильности, быстродействия;
- увеличение эффективности взаимодействия волоконно-оптического лазера и микрорезонатора.

Claims (3)

1. Микрорезонаторный волоконно-оптический датчик магнитных полей, включающий волоконно-оптический лазер в качестве источника оптического излучения, микрорезонатор с зеркальным отражателем, автоколлиматор, фотоприемник, анализатор спектра, отличающийся тем, что в качестве автоколлиматора использован волоконный автоколлиматор, выполненный в виде одномодового кварцевого световода со сферической линзой, сформированной на торце световода, а микрорезонатор выполнен в виде пленки из магнитного материала.
2. Микрорезонаторный волоконно-оптический датчик магнитных полей по п.1, отличающийся тем, что в качестве магнитного материала микрорезонатора использовано спиновое стекло.
3. Микрорезонаторный волоконно-оптический датчик магнитных полей по п.1, отличающийся тем, что в качестве магнитного материала микрорезонатора использован монокристалл железоиттриевого граната.
RU99127776A 1999-12-28 1999-12-28 Микрорезонаторный волоконно-оптический датчик магнитных полей RU2157512C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99127776A RU2157512C1 (ru) 1999-12-28 1999-12-28 Микрорезонаторный волоконно-оптический датчик магнитных полей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99127776A RU2157512C1 (ru) 1999-12-28 1999-12-28 Микрорезонаторный волоконно-оптический датчик магнитных полей

Publications (1)

Publication Number Publication Date
RU2157512C1 true RU2157512C1 (ru) 2000-10-10

Family

ID=20228844

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99127776A RU2157512C1 (ru) 1999-12-28 1999-12-28 Микрорезонаторный волоконно-оптический датчик магнитных полей

Country Status (1)

Country Link
RU (1) RU2157512C1 (ru)

Similar Documents

Publication Publication Date Title
US6668111B2 (en) Optical microcavity resonator sensor
EP0104943B1 (en) Stabilized fiber optic sensor
US4758087A (en) Fiber optic transducer
RU2152601C1 (ru) Волоконно-оптический датчик давления (его варианты) и способ его изготовления
US4120587A (en) Double optical fiber waveguide ring laser gyroscope
US20050180678A1 (en) Optical waveguide displacement sensor
WO2002001146A9 (en) Optical microcavity resonator sensor
JP2013068604A (ja) 中空コア共振フィルタのためのシステムおよび方法
JP2008216252A (ja) 共振化学的および生物学的感知のための装置および方法
US7746475B2 (en) Microgyroscope
Churenkov Photothermal excitation and self-excitation of silicon microresonators
RU2157512C1 (ru) Микрорезонаторный волоконно-оптический датчик магнитных полей
RU2170439C1 (ru) Микрорезонаторный волоконно-оптический датчик электрического тока
JPH0232561B2 (ru)
Conti et al. Coupling approaches and new geometries in whispering-gallery-mode resonators
RU2163354C1 (ru) Волоконно-оптический автогенератор
US20240255406A1 (en) Methods for flow and fluid properties measurement using intrinsic and extrinsic optical transducers
RU2202115C2 (ru) Микрорезонаторный волоконно-оптический датчик магнитных полей
EP3757524A1 (en) Composed multicore optical fiber interferometer
RU2135957C1 (ru) Микрорезонаторный волоконно-оптический преобразователь физических величин
Blake et al. Design and test of a production open loop all-fiber gyroscope
RU2161783C2 (ru) Волоконно-оптический датчик температуры на основе микрорезонатора
RU2169904C2 (ru) Волоконно-оптический автогенератор
GB2213588A (en) Improvements relating to optically driven vibrating sensors
Egorov Magnetic Force and Laser Excitation of Transverse Oscillations in Optical Microfibers