RU2156847C2 - Способ образования горизонтальных скважин - Google Patents

Способ образования горизонтальных скважин Download PDF

Info

Publication number
RU2156847C2
RU2156847C2 RU98113841A RU98113841A RU2156847C2 RU 2156847 C2 RU2156847 C2 RU 2156847C2 RU 98113841 A RU98113841 A RU 98113841A RU 98113841 A RU98113841 A RU 98113841A RU 2156847 C2 RU2156847 C2 RU 2156847C2
Authority
RU
Russia
Prior art keywords
tool
well
pipeline
soil
rotational
Prior art date
Application number
RU98113841A
Other languages
English (en)
Other versions
RU98113841A (ru
Inventor
А.С. Морозов
С.Г. Дровалев
Original Assignee
Морозов Анатолий Сергеевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Морозов Анатолий Сергеевич filed Critical Морозов Анатолий Сергеевич
Priority to RU98113841A priority Critical patent/RU2156847C2/ru
Publication of RU98113841A publication Critical patent/RU98113841A/ru
Application granted granted Critical
Publication of RU2156847C2 publication Critical patent/RU2156847C2/ru

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к области горного дела и строительства и применяется для бестраншейной прокладки подземных коммуникаций. Изобретение обеспечивает повышение экономичности и эффективности способа проходки скважин за счет обеспечения устойчивого равновесия приложенных сил и соосности изначальной оси прокола к оси увеличенного отверстия. Для решения поставленной задачи проходку пилотной скважины и уплотнение ее стенок осуществляют с помощью грунтопрокалывающего инструмента с участком в виде архимедова винта, которому сообщают вращательное и поступательное движение. При этом основную потребляемую мощность направляют на вращательное усилие, обеспечивающее окружную скорость инструмента, не превышающую 3,5 м/мин, а компенсирующее осевое усилие создают в пределах (0-30 кг/см2)•π•R2, где R - радиус инструмента. 2 з.п.ф-лы, 1 ил.

Description

Предлагаемое изобретение относится к строительству и может быть применено для бестраншейной прокладки подземных коммуникаций, в частности в стесненных городских условиях под препятствиями.
Известен способ бестраншейной прокладки трубопровода, согласно которому бурят пилотную дугообразную скважину, расширяют ее, вытесняют буровой раствор перед трубопроводом из скважины и одновременно с протаскиванием трубы уплотняют стенки скважины (а. с. СССР N 1276769, кл. E 02 F 5/18, опубл. 15.12.86).
Данный способ неприменим в стесненных городских условиях, так как при первоначальном бурении пилотной скважины буром можно повредить уже существующие коммуникации, кроме того, велика вероятность отклонения от первоначальной траектории прокола и при встрече с участком сыпучих несвязных грунтов бур просто увязнет в нем.
Наиболее близким техническим решением к предлагаемому является способ образования трубопровода в грунте. Согласно этому способу в грунте отрывают рабочий и приемный котлованы и по проектной оси трубопровода проходят пилотную скважину. Затем пилотную скважину герметизируют, заполняют ее полость газообразным агентом под давлением и выдерживают под давлением до появления поровой воды на поверхности грунта. Перед расширением пилотной скважины в нее закачивают жидкотекучий мелкодисперсный материал под давлением, затем расширяют пилотную скважину до проектного диаметра трубопровода при заполненной мелкодисперсным материалом пилотной скважине и осуществляют облицовку стенок расширенной скважины (п. России N 2019642, кл. E 02 F 5/18, опубл. 15.09.94).
Данный способ решает задачу упрочнения грунта вокруг трубопровода на большую толщину, но прохождение пилотной скважины и ее расширение осуществляются известным образом с помощью стандартного оборудования, в данном случае пневмопробойником, которому нужно сообщать достаточно большую силу удара для пробивания грунта. При этом чем больше прилагаемое усилие, тем больше отклонение наконечника в сторону и уход от первоначальной траектории прокола, соответственно меньше точность попадания в цель.
Известные грунтопрокалывающие устройства для усовершенствования снабжаются направляющими и стабилизирующими приспособлениями, а также расширителями, чтобы за один проход сразу создать скважину под трубу (например, а.с. СССР N 1789615, кл. E 02 F 5/18, опубл. 23.01.93). Все это усложняет проходческое оборудование, к тому же требуется прилагать все большую мощность, а вероятность того, что это дорогостоящее оборудование при проходке не встретится под землей с непроходимым препятствием, или не увязнет в сыпучем грунте, или не заденет существующие коммуникации мала, как и точность его попадания в цель.
Операции прокола и расширения могут быть разъединены, но проводятся в одном и том же направлении и при этом стенки скважины после прокола на участке несвязных сыпучих грунтов могут обрушаться и расширители столкнутся с теми же упомянутыми выше проблемами.
Целью предлагаемого изобретения является повышение экономичности и эффективности способа проходки горизонтальных скважин за счет обеспечения устойчивого равновесия приложенных сил, уменьшения боковых возмущающих сил на инструмент и обеспечения соосности изначальной оси прокола к оси увеличенного отверстия.
Для решения поставленной задачи в способе образования горизонтальных скважин в грунте, согласно изобретению, проходку пилотной скважины и уплотнение ее стенок осуществляют с помощью грунтопрокалывающего наконечника с участком в виде архимедова винта, которому сообщается вращательное и поступательное движение. При этом основную потребляемую мощность направляют на вращательное усилие, обеспечивающее окружную скорость инструмента, не превышающую 35 м/мин, а компенсирующее осевое усилие создают в пределах (0-30 кг/см2)•π•R2, где R - радиус инструмента.
Кроме того, прокол, расширение и прокладку трубопровода осуществляют посредством удлинительных штанг, которые при посекционном наращивании и демонтаже от рабочего до приемного котлована и обратно создают внутри скважины непрерывную цепь, оснащенную различными насадками.
При необходимости в процессе расширения скважины грунтовой керн разрезают на радиальные сегменты, затем разжижают и выдавливают в один из котлованов.
При сообщении штанге с грунтопрокалывающим наконечником основного вращательного усилия архимедов винт на наконечнике преобразует вращение в поступательное движение. Наконечник на первоначальном этапе как бы сам тащит себя и штангу. Прилагаемое осевое усилие тогда равно 0.
При дальнейшем наращивании штанг требуется сообщать наконечнику осевое усилие, но лишь для компенсации сил трения штанг о грунт. В сравнении с усилием пробоя оно ничтожно мало и не превышает нагрузки в 32 кг/см2•π•R2, где R - радиус инструмента. Превышение этого предела будет уводить ось прокола в сторону.
Величина вращательного усилия рассчитывается в зависимости от структуры проходимой среды и длины прокола и должна обеспечивать окружную скорость архимедова винта не более 3,5 м/мин, что вполне достаточно для преодоления сопротивления грунта. При большей скорости вращения архимедова винта резко возрастает динамическое сопротивление грунта и падает точность направления прокола.
При таком варианте приложения сил к грунтопрокалывающему инструменту в рыхлых осадочных породах он работает в режиме ввинчивания, а в твердых породах - в режиме сверления. В режиме ввинчивания усилие уплотнения грунта образуется от преобразования архимедовым винтом вращательного движения в поступательное, что приводит к высокой устойчивости продольного движения.
Обрушению стенок скважины после прокола препятствуют остающиеся в ней штанги, которые при операции расширения затягиваются в обратном направлении с помощью одной и той же силовой установки. Это также обеспечивает соосность изначальной оси прокола к оси увеличенного отверстия.
Предложенная методика позволяет осуществлять проколы как в сухих грунтах, так и ниже уровня грунтовых вод, а также в слабых грунтах, плывунах.
Данная технология проколов позволяет проводить работы в непосредственной близости с существующими коммуникациями, так как при первоначальном проколе его малый диаметр (20 - 50 мм) и незначительная подводимая мощность не могут нанести существенного ущерба уже проложенным коммуникациям. Небольшие отклонения направления инструмента исключают непредвиденные пересечения старых коммуникаций. При помощи электромагнитных или магнитных датчиков, введенных в скважину после прокола, можно определить местонахождение пересекаемых коммуникаций.
На чертеже показана схема приложения сил, действующих на инструмент в процессе прокола, где
P1 - поступательное усилие, действующее на грунтопрокалывающий инструмент от удлинительных штанг,
P2 - вращательное усилие передаваемое грунтопрокалывающему инструменту,
P3 - поступательное усилие архимедова винта.
P4 - вес штанг,
W - окружная скорость инструмента.
Предлагаемый способ образования горизонтальных скважин заключается в следующем. Из рабочего по направлению к приемному котловану по проектной оси трубопровода проходят пилотную скважину, монтируя друг за другом секции удлинительных штанг 1. Первая из этих штанг оснащена грунтопрокалывающим наконечником 2 цилиндрической формы с участком архимедова винта 3. От бурового станка 4 инструменту сообщают вращательное усилие и осевое усилие для компенсации сил трения штанг.
При радиусе инструмента 15 мм оптимальное осевое усилие в процессе проходки пилотной скважины составляет 5 кг/см2, а вращательное усилие 20-35 кгм/сек, что обеспечивает окружную скорость вращения архимедова винта 1,5 м/мин.
При достижении первой секцией штанг приемного котлована грунтопрокалывающий наконечник сменяют на расширительную насадку и начинают расширять скважину, затягивая штанги в обратном направлении, постепенно демонтируя их, пока штанга с расширителем не достигнет рабочего котлована. Вслед за ней снова монтируются штанги, используемые после демонтажа в рабочем котловане.
После того как штанга с расширителем достигнет рабочего котлована, в том же направлении от приемного к рабочему котловану продолжают затягивать штанги теперь уже с поршневой насадкой, к которой присоединен конец прокладываемого трубопровода.
В легких грунтах операции расширения и прокладки трубы совмещены.
При неприемлемости метода уплотнения из-за технических условий, таких как большой проектный диаметр трубопровода или на участках со слишком твердым грунтом, применяется мокрая выемка из канала прокола. Для этого через пилотную скважину протягивают кольцевую насадку, имеющую режущую кромку и радиальные ножи, с помощью которой грунтовой керн разрезают на радиальные сегменты, затем разжижают и выдавливают посредством поршневой насадки в один из котлованов.
Созданный экспериментальный переносной комплект оборудования, используемый для образования горизонтальных скважин по данной технологии, способен работать в стесненных городских условиях в существующих колодцах, подвалах, приямках размером 1,3 м х 0,7 м. Общий вес оборудования - 250 кг.
Потребляемая мощность 1,5 - 2 кВт. Максимальный вес отдельного блока оборудования - 30 кг.
Это оборудование обеспечивает дальность прокола до 40 - 50 метров, диаметр прокола - до 320 мм и отклонение от проектной оси - 1%.
Приведенный режим приложения сил дает положительный эффект при диаметре тела инструмента до 50 мм.
Благодаря заявляемому способу проходки горизонтальных скважин достигается высокая точность соответствия оси прокола проектной оси трубопровода и обеспечиваются стабильность и универсальность работы грунтопрокалывающего инструмента в различных грунтах, легкость и простота оборудования за счет малой подводимой мощности до 0,2 кВт/см2.

Claims (3)

1. Способ образования горизонтальных скважин в грунте, согласно которому из рабочего до приемного котлована по проектной оси трубопровода проходят пилотную скважину, затем расширяют ее до проектного диаметра трубопровода и прокладывают трубопровод в образованную скважину, отличающийся тем, что проходку пилотной скважины и уплотнение ее стенок осуществляют с помощью грунто-прокалывающего наконечника с участком в виде архимедова винта, которому сообщают вращательное и поступательное движение, при этом основную потребляемую мощность направляют на вращательное усилие, обеспечивающее окружную скорость инструмента, не превышающую 3,5 м/мин, а компенсирующее осевое усилие создают в пределах (0-30 кг/см2)•π•R2, где R - радиус инструмента.
2. Способ по п.1, отличающийся тем, что проходку пилотной скважины, ее расширение и прокладку трубопровода осуществляют посредством удлинительных штанг, которые при посекционном наращивании и демонтаже пускают по кругу от рабочего до приемного котлована и обратно.
3. Способ по п. 1, отличающийся тем, что при необходимости в процессе расширения скважины, грунтовой керн разрезают на отдельные радиальные сегменты, разжижают и выдавливают в один из котлованов.
RU98113841A 1998-07-13 1998-07-13 Способ образования горизонтальных скважин RU2156847C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98113841A RU2156847C2 (ru) 1998-07-13 1998-07-13 Способ образования горизонтальных скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98113841A RU2156847C2 (ru) 1998-07-13 1998-07-13 Способ образования горизонтальных скважин

Publications (2)

Publication Number Publication Date
RU98113841A RU98113841A (ru) 2000-04-20
RU2156847C2 true RU2156847C2 (ru) 2000-09-27

Family

ID=20208658

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98113841A RU2156847C2 (ru) 1998-07-13 1998-07-13 Способ образования горизонтальных скважин

Country Status (1)

Country Link
RU (1) RU2156847C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518644C1 (ru) * 2012-10-16 2014-06-10 Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук Способ управления направлением движения рабочего органа для проходки скважин в плывунах и болотистых грунтах

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518644C1 (ru) * 2012-10-16 2014-06-10 Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук Способ управления направлением движения рабочего органа для проходки скважин в плывунах и болотистых грунтах

Similar Documents

Publication Publication Date Title
RU2392390C2 (ru) Способ бестраншейной прокладки труб
CN101831906B (zh) 一种干式气动凿岩钻孔桩机及其工法
US5580188A (en) Method for replacing buried pipe
JPH0157239B2 (ru)
JPH1088956A (ja) 掘削装置トラクタ
CN101173517A (zh) 一种拔桩施工方法
BRPI0611197A2 (pt) aparelho e mÉtodo para direcionamento de um tubo condutor de extremidade aberta dentro do solo e conjunto de fundo de poÇo
CN102918225B (zh) 用于运行水平钻孔设备的方法和水平钻孔设备
CN104747202A (zh) 矩形顶管机的多刀盘组合式切削系统
ZA200503685B (en) Method to install underground pipe casing
US4548526A (en) Piling method
RU2156847C2 (ru) Способ образования горизонтальных скважин
CN201802313U (zh) 组合式岩石扩孔器
CN2298338Y (zh) 粘土层大管棚施工用的钻具
Milligan et al. Trenchless technology
Thomson EXTRACT. HORIZONTAL EARTH BORING.
Howell The pipe ramming technique
EP4217581B1 (en) Sonic-powered methods for horizontal directional drilling
Howell Impact moling
Simicevic et al. Guidelines for impact moling
KR20120002289A (ko) 관거매설공의 보강이 가능한 관거 추진장치 및 이를 이용한 관거 시공 공법
RU2153581C1 (ru) Установка для строительства переходов магистральных трубопроводов под дорогами и насыпями
Committee on Construction Equipment and Techniques Trenchless excavation construction methods: classification and evaluation
JP2002115490A (ja) トンネル掘削装置
Vidyanagar-Gujarat-India A STUDY ON TRENCHLESS TECHNOLOGY: ELIMINATE THE NEED FOR EXCAVATION