RU2156453C1 - Устройство для дистанционного измерения оптико-физических параметров объекта - Google Patents

Устройство для дистанционного измерения оптико-физических параметров объекта Download PDF

Info

Publication number
RU2156453C1
RU2156453C1 RU99105792/28A RU99105792A RU2156453C1 RU 2156453 C1 RU2156453 C1 RU 2156453C1 RU 99105792/28 A RU99105792/28 A RU 99105792/28A RU 99105792 A RU99105792 A RU 99105792A RU 2156453 C1 RU2156453 C1 RU 2156453C1
Authority
RU
Russia
Prior art keywords
optical
objects
parameters
measurements
attenuator
Prior art date
Application number
RU99105792/28A
Other languages
English (en)
Inventor
Н.П. Акимов
Ю.М. Гектин
ков Ю.В. Кисл
Ю.В. Кисляков
П.А. Осипов
нский М.Б. Смел
М.Б. Смелянский
Original Assignee
Кисляков Юрий Вячеславович
Осипов Павел Альбертович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кисляков Юрий Вячеславович, Осипов Павел Альбертович filed Critical Кисляков Юрий Вячеславович
Priority to RU99105792/28A priority Critical patent/RU2156453C1/ru
Application granted granted Critical
Publication of RU2156453C1 publication Critical patent/RU2156453C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Использование: дистанционное зондирование поверхности Земли с космических объектов и авиационных носителей различного класса для измерения оптико-физических параметров объектов. Сущность изобретения: устройство содержит первый и второй линейные поляризаторы 1, 2, которые совместно с ослабителем 3 и циркулярным поляризатором 4 жестко установлены в турель 9, закрепленную на оси двигателя 10 вращения, а светофильтр 5, объектив 6, многоэлементный приемник 7 излучения установлены последовательно и оптически связаны между собой. Турель 9 с двигателем 10 вращения, светофильтр 5, объектив 6, приемник 7 образуют оптический блок, который установлен в корпусе 11. Корпус 11 снабжен узлом соединения, жестко связанного с механизмом 12 дискретного поворота. Приемник 7 через АЦП 8 подключен к ОЗУ 13. Поляриметрическое устройство позволяет при малых габаритно-весовых параметрах и малом объеме элементной базы в N раз повысить точность проводимых измерений, где N - число угловых измерений, что позволяет обеспечивать распознавание объектов с сверхблизкими параметрами и получать данные о микрофизических структурных особенностях объектов. 2 ил.

Description

Изобретение относится к оптическому приборостроению и предназначено для дистанционного зондирования поверхности Земли с космических объектов и авиационных носителей различного класса для измерения оптико-физических параметров объектов.
Для решения задач дистанционного зондирования используются устройства различного класса: фотографические системы, оптико-механические сканирующие устройства, оптико-электронные системы на многоэлементных приемниках и т.д. с широкой гаммой тактико-технических характеристик. Несмотря на то что используемые устройства относятся к различным классам, общим для всех этих устройств является наличие объектива, формирующего изображение исследуемой поверхности, и чувствительного элемента (фотопленки или приемника излучения), расположенного либо в фокальной плоскости объектива, либо в сопряженной с ней плоскости. Эти устройства регистрируют пространственное распределение интенсивности светового поля в различных диапазонах спектра, которое однозначно отождествляется с отражающими или рассеивающими свойствами наблюдаемых объектов. Однако при этом не может быть зарегистрирован ряд оптических явлений, связанных с микрофизическими особенностями объектов.
Известно телевизионное устройство для измерения оптико-физических параметров объектов, содержащее ослабитель, первый и второй линейные поляризаторы, круговой правоциркулярный поляризатор, четыре светофильтра, первую, вторую, третью и четвертую телевизионные камеры, синхронизатор, первый, второй, третий и четвертый аналого-цифровой преобразователи (авторское свидетельство СССР N 173423, кл. H 04 N 17/00, 1992).
Недостатком известного устройства является низкая точность проводимых измерений, так как при измерениях не учтено пространственное распределение отраженного излучения, вследствие чего измеряемые параметры вектора Стокса и их поляризационные функционалы для одних и тех же объектов, полученные в разных условиях съемки, будут различными.
Повышение точности измерений оптико-физических параметров объектов достигается использованием устройств, в которых реализуется многоугловая поляриметрия, позволяющая наряду с определением четырех параметров вектора Стокса исследовать угловое распределение поляризационных признаков.
Многоугловая поляриметрия используется для идентификации при рассеянном освещении объектов с одинаковыми коэффициентами отражения, но с различной пространственной ориентацией, для разделения объектов с матовой и глянцевой поверхностью (контроль состояния растительности), для определения направления на источник освещения в мутной среде (солнечная ориентация в условиях плохой видимости), для определения аэрозольного состава атмосферы (атмосферная оптика и метеорология), для обнаружения загрязнения водоемов (охрана окружающей среды) и т.д.
Известно поляриметрическое устройство для дистанционного измерения оптико-физических параметров объектов, которое содержит N идентичных оптических ветвей, расположенных в одной плоскости с угловым расстоянием между соседними по номеру ветвями, равным 180o/N. Каждая оптическая ветвь содержит первый и второй линейные поляризаторы, ослабитель, циркулярный поляризатор, последовательно связанные с соответствующим светофильтром, телевизионной камерой и аналого-цифровым преобразователем, образуя соответственно первый, второй, третий и четвертый аналогичный измерительные каналы (патент РФ N 2107281, кл. G 01 N 21/21, 1997).
Поляризационное устройство для дистанционного зондирования оптико-физических параметров объектов по патенту N 2107281 по общности решаемых задач и функционально-структурной схеме наиболее близко к изобретению и выбрано в качестве прототипа.
Однако известное устройство, реализуя принцип многоугловой поляриметрии, не обеспечивает необходимой точности измерения оптико-физических параметров объектов и имеет ограниченное число углов, при которых возможно проведение измерений из-за наличия в устройстве N оптических ветвей, развернутых под углом друг к другу, то есть наличия 4xN оптических блоков: первых и вторых линейных поляризаторов, ослабителей, циркулярных поляризаторов, объективов, светофильтров и фотоприемных устройств, преобразующих оптическое излучение в электрический сигнал. При этом одноименные оптические блоки фактически не являются идентичными, так как технологические отклонения в процессе изготовления и ограниченная точность средств паспортизации приводят к неизбежному разбросу параметров. В качестве примера можно указать на различия коэффициентов пропускания поляризационных фильтров и на погрешности ориентации линейных поляризаторов в каждой из ветви. Таким образом, в устройстве имеется N фактически независимых, аналогичных, но не идентичных средств измерения с различными случайными и систематическими составляющими инструментальной погрешности.
Кроме того, устройство имеет большие массогабаритные характеристики и большой объем элементной базы.
Задачей изобретения является создание поляриметрического устройства для дистанционного зондирования оптико-физических параметров объектов, которое позволяет обеспечить распознавание объектов со сверхблизкими оптико-физическими параметрами, имеет высокую точность измерений, позволяющую получать данные о микрофизических структурных особенностях объектов, имеет малые габаритно-весовые характеристики и малый объем элементной базы.
Сущность изобретения заключается в том, что в известном поляриметрическом устройстве для дистанционного зондирования оптико-физических параметров объектов, содержащем оптический блок, включающий первый и второй линейные поляризаторы, ослабитель и циркулярный поляризатор, установленные последовательно и оптически связанные между собой светофильтр, объектив и многоэлементный приемник излучения, а также аналого-цифровой преобразователь (АЦП), первый и второй линейные поляризаторы, ослабитель и циркулярный поляризатор установлены жестко в турель, закрепленную на оси двигателя вращения, обеспечивающего последовательное совмещение оптических осей первого и второго линейных поляризаторов, ослабителя и циркулярного поляризатора с оптической осью светофильтра, а оптический блок установлен в корпусе, снабженном узлом соединения, жестко связанным с механизмом дискретного поворота в диапазоне углов от -60 до +60o, а АЦП включен между приемником излучения и оперативно запоминающим устройством (ОЗУ).
Изобретение поясняется чертежами.
На фиг. 1 показана функционально-структурная схема поляриметрического устройства для дистанционного зондирования оптико-физических параметров объектов.
На фиг. 2 представлена иллюстрация процесса угловых измерений поляриметрическим устройством оптико-физических параметров объектов.
Поляриметрическое устройство для дистанционного зондирования оптико-физических параметров объектов (фиг. 1) содержит оптический блок, включающий первый и второй линейные поляризаторы 1, 2, ослабитель 3, циркулярный поляризатор 4, светофильтр 5, объектив 6, многоэлементный приемник 7 излучения, АЦП 8, турель 9, двигатель 10 вращения, корпус 11, механизм 12 дискретного поворота, ОЗУ 13.
В поляриметрическом устройстве для дистанционного зондирования оптико-физических параметров объектов (фиг. 1) линейные поляризаторы 1, 2, ослабитель 3 и циркулярный поляризатор 4 жестко установлены в турель 9, закрепленную на оси двигателя 10 вращения, а светофильтр 5, объектив 6, многоэлементный приемник 7 излучения установлены последовательно и оптически связаны между собой. Турель 9 с двигателем 10 вращения, светофильтр 5, объектив 6, приемник 7 образуют оптический блок, который установлен в корпусе 11. Корпус 11 снабжен узлом соединения жестко связанного с механизмом 12 дискретного поворота. Приемник 7 через АЦП 8 подключен к ОЗУ 13.
Многоэлементный приемник 7 излучения выполнен в виде матрицы или линейки чувствительных элементов.
На фиг. 2 обозначено: 1 - исследуемая поверхность, 2 - траектория и направление движения носителя, 3 - положение носителя в момент проведения измерений (I - IX), 4 - направление визирной оси оптического блока при углах съемки от +60 до -60o, P-P' - участок исследуемой поверхности, на котором проводятся измерения оптико-физических параметров объектов, А - объект исследования.
Поляриметрическое устройство для дистанционного зондирования оптико-физических параметров работает следующим образом.
Перед установкой устройства на движущийся носитель (космический или авиационный) в оптическом блоке плоскость поляризации первого линейного поляризатора 1 совмещается с плоскостью, образованной местной вертикалью и направлением движения носителя, а второго линейного поляризатора 2 - под углом 45o к ней.
Оптическое излучение, отраженное от исследуемой поверхности, поступает на вход первого линейного поляризатора 1 (фиг. 1), который выделяет линейную составляющую поляризованного излучения, совпадающую с плоскостью, образованной местной вертикалью и движением носителя. Отфильтрованное поляризатором 1 излучение поступает на вход светофильтра 5, формирующего спектральный диапазон, в котором проводятся измерения оптико-физических параметров объектов. После светофильра 5 излучение поступает на вход объектива 6, который формирует изображение исследуемой поверхности на чувствительной площадке многоэлементного приемника 7 излучения. Приемник 7 располагается в фокальной плоскости объектива 6, его центральный элемент совмещается с оптической осью объектива.
Излучение, прошедшее оптическую систему (светофильтр 5 и объектив 6), приемником 7 преобразуется в дискретный аналоговый сигнал, который передается на вход АЦП 8, преобразующего его в цифровой. После АЦП 8 дискретный цифровой сигнал направляется в ОЗУ 13, где происходит временное накопление массива данных, которые затем передаются на запоминающее устройство, либо непосредственно в систему обработки и нормализации.
Время t, в течение которого поляризатор 1 перекрывает оптическую систему, а на приемнике 7 происходит накопление сигнала, определяется по формуле
Figure 00000002

где V - скорость носителя;
R - разрешение, реализуемое устройством на исследуемой поверхности.
Далее излучение от исследуемой поверхности перекрывается на время t вторым линейным поляризатором 2, которой выделяет линейную составляющую поляризованного излучения, отраженного от исследуемой поверхности, лежащую в плоскости, ориентированной под углом 45o к плоскости, образованной местной вертикалью и движением носителя. Затем излучение перекрывается на время t ослабителем 3, который ослабляет интенсивность излучения в 2 раза, и, наконец, излучение перекрывается на время t циркулярным поляризатором 4, выделяющим составляющую излучения, поляризованную по кругу.
Таким образом, при циклической смене поляризаторов 1, 2, 4 и ослабителя 3 на выходе приемника 7 излучения формируется последовательность четырех дискретных сигналов: первый - при установке первого линейного поляризатора 1, второй - второго линейного поляризатора 2, третий - ослабителя 3 и четвертый - циркулярного поляризатора 4, необходимых для определения четырех параметров вектора Стокса и их относительных функционалов: степени линейной поляризации p, азимута плоскости линейной поляризации φ и эллиптичность q (степень круговой поляризации).
Многоугловое дистанционное измерение оптико-физических параметров объектов достигается с помощью механизма 12 дискретного поворота, жестко закрепленного на носителе, разворачивающего визирную ось оптического блока в плоскости, образованной местной вертикалью и траекторией движения носителя (фиг. 2). Включение механизма 12 производится через заданные промежутки времени t1, которые равны
Figure 00000003

где H - высота орбиты носителя;
W - максимальный угол съемки, реализуемый устройством (в приведенном примере 60o);
N - число углов съемки.
Минимальное значение t1 должно быть больше времени перевода визирной оси механизмом 12 из одного положения в другое, а также должно быть больше 4t.
Пусть требуется измерить оптико-физические характеристики объекта А (фиг. 2) на участке P-P' исследуемой поверхности 1 под углами от +60 до -60o через каждые 15o, которые соответствуют положению носителя - I-IX. При подходе носителя к положению I устройство включается и с помощью механизма 12, его визирная ось устанавливается под углом 30o к надирному направлению, что обеспечивает в момент прохождения носителя положения I съемку участка P-P' под углом 60o. За время перемещения носителя из положения I в положение II механизм разворачивает визирную ось оптического блока на угол 45o и при достижение положения II выполняется съемка под углом 45o и т.д.
Таким образом, измерения оптико-физических параметров объектов под разными углами визирования проводятся одним средством измерения, что повышает точность полученных устройством результатов.
Так как число углов, при которых измеряются оптико-физические параметры объектов, в устройстве определяется не количеством оптических ветвей, а числом дискретных положений исполнительного механизма, на котором установлен оптический блок, и временем перемещения визирной оси из одного положения в другое, то число измерений по сравнению с прототипом может быть существенно увеличено, что позволяет также повысить точность измерений.
Рассмотрим варианты исполнения устройства с использованием матричного и линейного фотоприемников.
Пусть в качестве приемника излучения используется матрица kxk элементов. В этом случае проекция приемника на подстилающую поверхность при визировании в надир есть квадрат со стороной
Figure 00000004

где d - размер чувствительного элемента приемника;
f - фокусное расстояние объектива.
Тогда число углов съемки N при использовании матрицы, учитывая, что для каждого из углов визирования необходимо получение 4-х кадров видеоинформации, равно
Figure 00000005

где T - время перехода носителя из положения I в IX;
tk - время формирования одного кадра (tk=t);
tc - время считывания кадра;
tm - время перемещения визирной оси из одного положения в другое (tm= t1).
При использовании линейного фотоприемника в устройстве кадровая развертка осуществляется за счет движения носителя, но так же, как и в случае использования матрицы, формируется кадр. В данном случае число угловых измерений, которые можно реализовать, значительно меньше, так как их увеличение приведет к уменьшению длины кадра. При квадратном кадре в диапазоне углов от -60 до +60o число измерений составит не более 9.
В процессе обработки оцифрованные видеосигналы с ОЗУ 13 подвергаются геометрической коррекции, так как при наклонном зондировании имеют место существенные геометрические искажения между одноименными элементами разрешения при различных углах наблюдения, после чего они поступают на блоки вычисления, в которых сначала вычисляются параметры вектора Стокса по алгоритму, соответствующему данной оптической схеме, при этом алгоритм вычисления параметров вектора Стокса записывается в виде матрицы
Figure 00000006

где параметр I характеризует интенсивность оптического сигнала, параметр Q - преимущественную горизонтальную линейную поляризацию, параметр U - преимущественную горизонтальную линейную поляризацию под углом 45o и параметр V - круговую поляризацию. Затем вычисляются функционалы, которые и представляют интерес для визуального анализа, так как являются относительными величинами, то есть не зависят от входной экспозиции. С их помощью можно создать количественное описание оптико-физических параметров объектов. Алгоритм вычисления этих функционалов определяется выражениями:
Figure 00000007

Figure 00000008

Figure 00000009

Предлагаемое поляриметрическое устройство для дистанционного измерения оптико-физических параметров объектов позволяет при малых габаритно-весовых параметрах и малом объеме элементной базы в
Figure 00000010
раз повысить точность проводимых измерений, где N - число угловых измерений, что позволяет обеспечивать распознавание объектов с сверхблизкими параметрами и получать данные о микрофизических структурных особенностях объектов.
Актуальность решаемой задачи, а именно возможность контроля состояния окружающей среды, возможность ориентации в условиях плохой видимости, решение задач атмосферной оптики и метеорологии и относительно невысокая стоимость устройства обеспечивают устройству практическое применение.

Claims (1)

  1. Устройство для дистанционного измерения оптико-физических параметров объектов, содержащее оптический блок, включающий первый и второй линейные поляризаторы, ослабитель и циркулярный поляризатор, установленные последовательно и оптически связанные между собой, светофильтр, объектив и многоэлементный приемник излучения, а также аналого-цифровой преобразователь, отличающееся тем, что первый и второй линейные поляризаторы, ослабитель и циркулярный поляризатор установлены жестко в турель, закрепленную на оси двигателя вращения, обеспечивающего последовательное совмещение оптических осей первого и второго линейных поляризаторов, ослабителя и циркулярного поляризатора с оптической осью светофильтра, оптический блок установлен в корпусе, снабженном узлом соединения, жестко связанным с механизмом дискретного поворота в диапазоне углов от -60 до +60o, аналого-цифровой преобразователь включен между приемником излучения и оперативно запоминающим устройством.
RU99105792/28A 1998-12-29 1998-12-29 Устройство для дистанционного измерения оптико-физических параметров объекта RU2156453C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99105792/28A RU2156453C1 (ru) 1998-12-29 1998-12-29 Устройство для дистанционного измерения оптико-физических параметров объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99105792/28A RU2156453C1 (ru) 1998-12-29 1998-12-29 Устройство для дистанционного измерения оптико-физических параметров объекта

Publications (1)

Publication Number Publication Date
RU2156453C1 true RU2156453C1 (ru) 2000-09-20

Family

ID=20217463

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99105792/28A RU2156453C1 (ru) 1998-12-29 1998-12-29 Устройство для дистанционного измерения оптико-физических параметров объекта

Country Status (1)

Country Link
RU (1) RU2156453C1 (ru)

Similar Documents

Publication Publication Date Title
CA2774119C (en) Apparatus and method for navigation
US6563582B1 (en) Achromatic retarder array for polarization imaging
CN101806625B (zh) 静态傅立叶变换干涉成像光谱全偏振探测装置
Voss et al. Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system
US20210148811A1 (en) Systems and methods for detecting thermodynamic phase of clouds with optical polarization
US9297880B2 (en) Two axis interferometer tracking device and method
CN113252168A (zh) 一种基于四相位调制的偏振光谱成像系统
Bowles et al. Airborne system for multispectral, multiangle polarimetric imaging
US20150092179A1 (en) Light ranging with moving sensor array
Cutter et al. Integration and testing of the compact high-resolution imaging spectrometer (CHRIS)
RU2156453C1 (ru) Устройство для дистанционного измерения оптико-физических параметров объекта
Davis et al. Calibration, characterization, and first results with the Ocean PHILLS hyperspectral imager
Syniavskyi et al. Aerosol-UA satellite mission for the polarimetric study of aerosols in the atmosphere
Mudge et al. Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation
RU2324151C1 (ru) Многоканальный сканирующий радиометр с широкой полосой обзора
Surdej et al. The 4m international liquid mirror telescope (ILMT)
CN107179125B (zh) 稀疏目标光谱实时探测系统
Hooper et al. An airborne imaging multispectral polarimeter (AROSS-MSP)
Mendenhall et al. EO-1 Advanced Land Imager in-flight calibration
Houck et al. IRS: an infrared spectrograph for SIRTF
Lenhard Improving the calibration of airborne hyperspectral sensors for earth observation
US4533828A (en) Arrangement for increasing the dynamic range of optical inspection devices to accommodate varying surface reflectivity characteristics
RU2150725C1 (ru) Устройство для дистанционного получения изображений в тепловой области спектра
Chommeloux et al. MERIS FM performances
CN117949087A (zh) 一种基于偏振调制阵列和消色差四面角锥棱镜的偏振相机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031230

HK4A Changes in a published invention
MM4A The patent is invalid due to non-payment of fees

Effective date: 20041230

NF4A Reinstatement of patent
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141230