RU2151982C1 - Комбинированная криогенная система кириллова для ожижения природного газа большой производительности - Google Patents

Комбинированная криогенная система кириллова для ожижения природного газа большой производительности Download PDF

Info

Publication number
RU2151982C1
RU2151982C1 RU99110167A RU99110167A RU2151982C1 RU 2151982 C1 RU2151982 C1 RU 2151982C1 RU 99110167 A RU99110167 A RU 99110167A RU 99110167 A RU99110167 A RU 99110167A RU 2151982 C1 RU2151982 C1 RU 2151982C1
Authority
RU
Russia
Prior art keywords
gas
cryogenic
flow line
natural gas
cold
Prior art date
Application number
RU99110167A
Other languages
English (en)
Inventor
Н.Г. Кириллов
Original Assignee
Военный инженерно-космический университет им. А.Ф. Можайского
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Военный инженерно-космический университет им. А.Ф. Можайского filed Critical Военный инженерно-космический университет им. А.Ф. Можайского
Priority to RU99110167A priority Critical patent/RU2151982C1/ru
Application granted granted Critical
Publication of RU2151982C1 publication Critical patent/RU2151982C1/ru

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к криогенной технике. Использование изобретения позволит повысить эффективность системы и снизить материальные затраты при получении, хранении и использовании сжиженных газов, а также снизить экологическое загрязнение окружающей среды. Природный газ повышенного давления из магистрального газопровода поступает в вихревую трубу, где разделяется на два потока: холодный и теплый. Холодный поток в виде сжиженного газа сливается по магистрали в теплоизолированную емкость. Теплый поток газа предварительно охлаждается, расширяясь в турбине с получением полезной энергии, засасывается в конденсатор криогенной машины Стирлинга, где конденсируется. Жидкий газ сливается в сосуд Дьюара и подается насосом в емкость. Образовавшиеся пары сжиженного газа в газосодержащей части емкости конденсируются за счет теплообмена с жидким газом, протекающим через змеевик. 1 з.п.ф-лы, 1 ил.

Description

Изобретение относится к области криогенной техники, криогенных газовых холодильных машин, работающих по циклу Стирлинга, а также получения и хранения сжиженных газов, например, природного газа.
Известны технические решения газовых турбин, в которых энергия сжатого газа при расширении преобразуется в работу одновременно с понижением температур газа (Чечеткин А. В., Занемонец Н.А., Теплотехника. Учеб. для хим.-технол. спец. вузов. - М.: Высш. шк., 1986. - стр. 307).
Известно, что для сжижения газов используются различные циклы, например с дросселированием или детандерные, однако в области криогенных температур (60 - 160 К) наиболее высокоэффективным циклом является цикл с холодильной машиной, работающей по циклу Стирлинга. Эффективность криогенных машин Стирлинга практически в 2 раза выше, по сравнению с другими установками применяемыми для сжижения газов. (Усюкин И.П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность, 1982., стр. 185 - 186).
Известно, что сжиженный природный газ рассматривается как перспективное жидкое топливо, а температура кипения сжиженных природных газов соответствует температуре - 162oC (113 К). (Нефтегазовая вертикаль. /Анал. журнал 9 - 10 (24 - 25). М., 1998, стр. 123/). Однако, существует проблема высокоэффективного получения сжиженного природного газа.
Известны технические решения для газификации сжиженных газов перед их раздачей потребителям с применением насосов высокого давления. (Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М. П. Малкова/ Изд.: "Иностр. литература", М., 1961, стр. 287 - 288).
Известно устройство сосуда Дьюара для жидкого азота с вакуумно-порошковой изоляцией. (Соколов Е. Я. , Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. Учеб. пособие для вузов. - 2-е изд. - М.: Энергоатомиздат, 1981, стр. 202).
Известно устройство газовой холодильной машины "Филипса", работающей по обратному циклу Стирлинга, предназначенной для сжижения воздуха (Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М. П .Малкова/ Изд.: "Иностр. литература". М., 1961, стр. 35).
Однако существующие в настоящее время криогенные машины Стирлинга имеют невысокую производительность.
Известно, что для сжижения газов может применяться вихревая труба. (Р.Б. Скотт. Техника низких температур. Перевод под ред. проф. М.П. Малкова. М.: Изд. иностр. литер., 1962, стр. 50). Однако при применении вихревой трубки коэффициент сжижения не превышает 15% от общего количества подаваемого в трубку газа.
Известна схема холодильной установки с вихревой трубой, включающей в себя источник газа с повышенным давлением (компрессор), вихревую трубу, магистраль теплого потока с дроссельным клапаном, магистраль холодного потока. (Теоретические основы тепло- и хладотехники. Ч.1. Техническая термодинамика. Уч. пособие под ред. проф. Э.И. Гуйко. Л., 1974, - стр. 265). Однако конструктивное исполнение данной установки не предназначено для сжижения природного газа.
Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении эффективности систем и снижении материальных затрат при получении, хранении и использовании сжиженных газов, например, природного газа, а также, в снижении экологического загрязнения окружающей среды и увеличении коэффициента ожижения газа до 100%.
Для достижения этого технического результата, комбинированная криогенная система для ожижения природного газа большой производительности, включающая в себя источник с повышенным давлением газа (магистральный газопровод), вихревую трубу, магистраль теплого потока и магистраль холодного потока, снабжена теплоизолированной емкостью для хранения сжиженного газа, связанной с вихревой трубой через магистрали холодного и теплового потоков, при этом в магистраль теплого потока последовательно введены расширительная турбина с электрогенератором на одном валу, расширительная емкость, криогенная машина Стирлинга, сосуд Дъюара, насос высокого давления, обратный клапан и конденсирующий змеевик, расположенный в газосодержащей части емкости для хранения сжиженных газов, при этом в случае необходимости в состав магистрали теплого потока может быть параллельно включено несколько криогенных машин Стирлинга.
Введение в состав комбинированной криогенной системы для ожижения природного газа большой производительности теплоизоляционной емкости для хранения сжиженного газа, связанной с вихревой трубой через магистрали теплого и холодного потоков, а также оснащение магистрали теплого потока расширительной турбины с электрогенератором, расширительной емкостью, криогенной машиной Стерлинга, сосудом Дъюара, насосом высокого давления и конденсирующим змеевиком, позволяет получить новое свойство, заключающееся в 100% сжижении природного газа за счет применения эффекта вихревой трубы и криогенной машины Стрелинга, снижении затрат энергопотребления системы за счет применения высокоэффективного холодильного цикла и расширения в турбине с получением дополнительной полезной на магистрали теплового потока, а также переконденсация паров газа, образовавшихся в емкости для хранения сжиженного газа за счет внешнего теплопритока, тем самым исключая их выброс в окружающую среду.
На чертеже изображена комбинированная криогенная система для сжижения природного газа большой производительности.
Комбинированная криогенная система для сжижения природного газа большой производительности включает в себя источник с повышенным давлением газа 1 (магистральный газопровод), регулировочный клапан 2, вихревую трубу 3, магистраль теплого потока 4 с расширительной турбиной 5, расположенной на одном валу с электрогенератором 6, расширительной емкостью 7, криогенной машиной Стирлинга 8, сосудом Дъюара 9, насосом высокого давления 10, обратным клапаном 11 и конденсирующим змеевиком 12, магистраль холодного потока 13. Вихревая труба 3 соединена магистралями 4 и 13 с теплоизолированной емкостью для хранения сжиженного газа 14. Конденсирующий змеевик 12 расположен в газосодержащей части емкости 14.
Комбинированная криогенная система для сжижения природного газа большой производительности работает следующим образом.
Природный газ повышенного давления из магистрального газопровода 1 через регулирующий клапан 2 поступает в вихревую трубу 3, где разделяется на два потока: холодный и теплый. Холодный поток в виде сжиженного газа сливается по магистрали 13 в теплоизолированную емкость для хранения сжиженного газа 14. Теплый поток газа по магистрали 4 проходит через расширительную турбину 5, где расширитель, охлаждается и совершает полезную работу с получением электроэнергии в электрогенераторе 6, расположенном на одном валу с турбиной 5, затем из расширительной емкости 7 засасывается в испаритель (не показан) холодильной машины Стирлинга 8, где газообразный природный газ сжижается. Жидкий газ из испарителя холодильной машины Стирлинга 8 сливается в сосуд Дъюара 9 и насосом высокого давления 10 через обратный клапан 11 подается в конденсирующий змеевик 12, проходя через который переконденсирует пары сжиженного газа, образовавшиеся в результате внешних теплопритоков, и сливается в емкость 14. Обратный клапан 11 предотвращает движение рабочей среды в обратном направлении.
Источники информации
1. Чечеткин А. В., Занемонец Н.А. Теплотехника. Учеб. для хим.-технол. спец. вузов. - М.: Высш. шк., 1986, стр. 307.
2. Усюкин И. П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность, 1982, стр. 185 - 186).
3. Нефтегазовая вертикаль. /Анал. журнал 9 - 10 (24 - 25). М., 1998, стр. 123/.
4. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова/ Изд.: "Иностр. литература". М., 1961, стр. 287 - 288.
5. Соколов Е. Я. , Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. Учеб. пособие для вузов. - 2-е изд. - М.: Энергоатомиздат, 1981, стр. 202.
6. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П.Малкова/. Изд.: "Иностр. литература". М., 1961, стр. 35.
7. Р. Б. Скотт, Техника низких температур. Перевод под ред. проф. М.П. Малкова. М.: Изд. иностр. литер., 1962, стр. 50.
8. Теоретические основы тепло- и хладотехники. Ч.1. Техническая термодинамика. Уч. пособие под ред. проф. Э.И. Гуйко. Л., 1974, стр. 265.

Claims (2)

1. Комбинированная криогенная система для ожижения природного газа большой производительности, включающая в себя источник с повышенным давлением газа (магистральный газопровод), вихревую трубу, магистраль теплого потока и магистраль холодного потока, отличающаяся тем, что снабжена теплоизолированной емкостью для хранения сжиженного газа, связанной с вихревой трубой через магистрали холодного и теплого потоков, при этом в магистраль теплого потока последовательно введены расширительная турбина с электрогенератором на одном валу, расширительная емкость, криогенная машина Стирлинга, сосуд Дьюара, насос высокого давления, обратный клапан и конденсирующий змеевик, расположенный в газосодержащей части емкости для хранения сжиженных газов.
2. Комбинированная криогенная система по п. 1, отличающаяся тем, что в состав магистрали теплого потока параллельно включено несколько криогенных машин Стирлинга.
RU99110167A 1999-05-19 1999-05-19 Комбинированная криогенная система кириллова для ожижения природного газа большой производительности RU2151982C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99110167A RU2151982C1 (ru) 1999-05-19 1999-05-19 Комбинированная криогенная система кириллова для ожижения природного газа большой производительности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99110167A RU2151982C1 (ru) 1999-05-19 1999-05-19 Комбинированная криогенная система кириллова для ожижения природного газа большой производительности

Publications (1)

Publication Number Publication Date
RU2151982C1 true RU2151982C1 (ru) 2000-06-27

Family

ID=20219841

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99110167A RU2151982C1 (ru) 1999-05-19 1999-05-19 Комбинированная криогенная система кириллова для ожижения природного газа большой производительности

Country Status (1)

Country Link
RU (1) RU2151982C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Теоретические основы тепло- и хладотехники, ч. 1. Техническая термодинамика./Под ред. Гуйго Э.И.-Л.: ЛГУ 1974, с. 265 *

Similar Documents

Publication Publication Date Title
RU2141611C1 (ru) Способ сжижения
GB2494400A (en) Cryogenic energy storage system
BRPI0921562B1 (pt) processo e instalação de produção de uma corrente de gás natural liquefeito sub-resfriado a partir de uma corrente de carga de gás natural
Sung et al. LNG cold energy utilization technology
Pakzad et al. Thermodynamic assessments of a novel integrated process for producing liquid helium and hydrogen simultaneously
Li et al. Thermodynamic Analysis‐Based Improvement for the Boil‐off Gas Reliquefaction Process of Liquefied Ethylene Vessels
CN209279430U (zh) 一种生产液化天然气的制冷设备
Tan et al. An ejector‐enhanced re‐liquefaction process (EERP) for liquid ethylene vessels
RU2151982C1 (ru) Комбинированная криогенная система кириллова для ожижения природного газа большой производительности
RU2159908C1 (ru) Установка с криогенной машиной стирлинга для хранения сжиженных газов
CN202630581U (zh) 三循环复叠式制冷天然气液化系统
Yoon et al. Assessment of the performance of a natural gas liquefaction cycle using natural refrigerants
RU2151978C1 (ru) Комбинированная стирлинг-система для сжижения газов и их долговременного хранения
RU2156417C1 (ru) Криогенный комплекс кириллова по сжижению природного газа большой производительности
RU2150056C1 (ru) Установка для сжижения газов с применением криогенной холодильной машины стирлинга
RU2151348C1 (ru) Комбинированная установка для сжижения газов и их хранения на основе криогенной холодильной машины стирлинга
RU2154784C1 (ru) Установка для конденсации паров сжиженных газов на основе гелиевой холодильной машины
RU2154783C1 (ru) Установка для переконденсации выпара сжиженных газов с гелиевой холодильной машиной
RU2151980C1 (ru) Криогенная система для ожижения воздуха по модифицированному циклу кириллова
RU2166709C1 (ru) Высокоэффективная комбинированная система по схеме кириллова для ожижения магистрального природного газа
RU2156414C1 (ru) Универсальная установка для сжижения газов и их хранения на основе криогенной машины стирлинга
Ri-yi et al. Exergy analysis for LNG refrigeration cycle
Biglia et al. Performance analysis of a nitrogen-based Brayton cryocooler prototype
RU2151981C1 (ru) Криогенная система для ожижения воздуха по циклу клода-кириллова
RU2162580C2 (ru) Установка для получения и долговременного хранения сжиженного природного газа