RU2150652C1 - Коаксиальный ускоритель сивкова - Google Patents

Коаксиальный ускоритель сивкова Download PDF

Info

Publication number
RU2150652C1
RU2150652C1 RU99103985/02A RU99103985A RU2150652C1 RU 2150652 C1 RU2150652 C1 RU 2150652C1 RU 99103985/02 A RU99103985/02 A RU 99103985/02A RU 99103985 A RU99103985 A RU 99103985A RU 2150652 C1 RU2150652 C1 RU 2150652C1
Authority
RU
Russia
Prior art keywords
barrel
central electrode
solenoid
beginning
accelerator
Prior art date
Application number
RU99103985/02A
Other languages
English (en)
Inventor
А.А. Сивков
Original Assignee
Научно-исследовательский институт высоких напряжений при Томском политехническом университете
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт высоких напряжений при Томском политехническом университете filed Critical Научно-исследовательский институт высоких напряжений при Томском политехническом университете
Priority to RU99103985/02A priority Critical patent/RU2150652C1/ru
Application granted granted Critical
Publication of RU2150652C1 publication Critical patent/RU2150652C1/ru

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

Изобретение относится к области электротехники, а именно к области электрических машин для перемещения жесткого тела вдоль некоторой траектории. Технический результат - повышение КПД. Ускоритель состоит из коаксиально размещенного внутри соленоида цилиндрического электропроводящего ствола, внутри которого размещены метаемое тело и плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя. Цепь питания второй клеммой присоединена к концу соленоида, удаленному от центрального электрода. Второй конец соленоида электрически связан с началом ствола, а вершины центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола. Корпус узла центрального электрода выполнен из магнитного материала, а остальные металлические элементы ускорителя - из немагнитных материалов, причем прикрепленная к цилиндрическому электропроводящему стволу часть корпуса узла центрального электрода перекрывает зону размещения плавкой перемычки. Поперечное электрическое сопротивление стенки единицы длины ствола постоянно по всей длине ствола, охваченной соленоидом, включая зону сопряжения с корпусом узла центрального электрода. Кроме того, плавкая перемычка выполнена в виде расходящихся от центрального электрода проволочек. Донная часть метаемого тела выполнена с углублением, в котором размещена плавкая перемычка, а зона размещения плавкой перемычки заполнена водороднасыщенным веществом. 3 з.п.ф-лы, 3 ил.

Description

Изобретение относится к области электротехники и электрофизики, а именно к области электрических машин для перемещения жесткого тела вдоль некоторой траектории, и может быть использовано в экспериментальной физике и ускорительной технике для ускорения макротел до гиперскоростей.
Известен коаксиальный ускоритель (см. А.Д. Лебедев, В.А. Урюков. Импульсные ускорители плазмы высокого давления. Новосибирск 1990 г., с. 18-21, рис. 1.10.2. ). Этот ускоритель состоит из двух цилиндрических, коаксиально расположенных электродов, разделенных изолятором, между которыми поджигается ускоряемый дуговой разряд. Система электродов коаксиально размещена внутри соленоида. Причем система электродов с ускоряемым разрядом и соленоид питаются от отдельных источников.
Недостатками данного устройства является низкий КПД преобразования электромагнитной энергии в кинетическую энергию метаемого тела, не более 4%, и сложность устройства источника электропитания.
Наиболее близким к заявляемому ускорителю является коаксиальный ускоритель (патент РФ N 2119140 опубл. 20.09.98 г., МПК6 F 41 B 6/00). Устройство выполнено в виде цилиндрического электропроводящего ствола, внутри которого размещены метаемое тело и плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, которое одной клеммой присоединено к цепи питания ускорителя, причем ствол коаксиально размещен внутри соленоида, а цепь питания второй клеммой присоединена к концу соленоида, удаленному от центрального электрода, второй конец соленоида электрически связан с началом ствола, a вершина центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола.
Недостатком данного устройства является низкий КПД преобразования электромагнитной энергии в кинетическую энергию метаемого тела, не более 10,5%.
Основной технической задачей предложенного устройства является повышение КПД преобразования подведенной электромагнитной энергии в кинетическую энергию метаемого тела от 15 до 17%.
Указанная техническая задача достигается тем, что в коаксиальном ускорителе Сивкова, выполненном в виде коаксиально размещенного внутри соленоида цилиндрического электропроводящего ствола, внутри которого размещены метаемое тело и плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя, цепь питания второй клеммой присоединена к концу соленоида, удаленному от центрального электрода, второй конец соленоида электрически связан с началом ствола, а вершина центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола, согласно предложенному решению корпус узла центрального электрода выполнен из магнитного материала, а остальные металлические элементы ускорителя - из немагнитных материалов, причем прикрепленная к цилиндрическому электропроводящему стволу часть корпуса узла центрального электрода перекрывает зону размещения плавкой перемычки, а поперечное электрическое сопротивление стенки единицы длины ствола постоянно по всей длине ствола, охваченной соленоидом, включая зону сопряжения с корпусом узла центрального электрода.
Целесообразно плавкую перемычку выполнять в виде расходящихся от центрального электрода проволочек, огибающих торцевую часть изолятора центрального электрода, обращенную к метаемому телу.
Кроме того, данная часть метаемого тела выполнена с углублением, в котором размещена плавкая перемычка.
Целесообразно также зону размещения плавкой перемычки заполнять водородонасыщенным веществом.
На фиг. 1 изображен коаксиальный ускоритель с элементами электрической схемы питания; на фиг. 2 - вид торца изолятора центрального электрода; на фиг. 3 а,б - вид сменного узла ускорителя с устройством металлического метаемого тела с углублением в его донной части: а - в исходном состоянии; б - в процессе работы.
Устройство (фиг. 1 и 2) состоит из цилиндрического электропроводящего ствола 1, центрального электрода 2, соединяющей их плавкой перемычкой 3, состоящей из металлических проволочек, расходящихся от центрального электрода 2 и огибающих торцевую часть изолятора 4 центрального электрода 2, обращенную к метаемому телу 5. Корпус 6 узла центрального электрода 2, выполненный из магнитного материала, конструкционной стали, сопрягается со стволом, например, с помощью резьбового соединения, укрепляя узел центрального электрода 2. Соленоид 7 может быть выполнен за одно целое с фланцем 8 и цилиндрической казенной частью 9, в которой размещается корпус 6 узла центрального электрода 2 и укрепляется резьбовой заглушкой 10. Соленоид 7 укреплен прочным стеклопластиковым корпусом 11 и стянут мощными токопроводящими шпильками 12 между фланцем 8 и стеклопластиковым упорным кольцом 13. Токопроводящие шпильки 12 электрически соединены токопроводящим кольцом 14, а к одной или нескольким токопроводящим шпилькам 12 присоединен шинопровод 15 внешней схемы электропитания. Второй шинопровод 16 схемы электропитания присоединен к центральному электроду 2. На фиг. 3,а показано водородосодержащее вещество 17, в качестве которого было использовано трансформаторное масло. На фиг. 3,б показаны плазменный жгут-пинч 18 и плазменная перемычка 19, образующаяся после сгорания плавкой перемычки 3 (фиг. 1).
Работа устройства заключается в следующем. При замыкании ключа K (фиг. 1) в контуре электропитания ускорителя начинает протекать ток от первичного накопителя энергии, например, конденсатора C. При достижении нарастающим током некоторого уровня плавкая перемычка 3 перегорает с образованием сильноточного дугового разряда, начальная форма плазменной структуры которого задается конфигурацией и расположением проволочек (фиг. 2), а также наличием цилиндрического канала в изоляторе центрального электрода. Электровзрывной эффект и эффект термического разложения материала изолятора 4, выполненного, например, из полиэтилена, на поверхности стенки цилиндрического канала обеспечивает резкое повышение давления, сообщающее начальный импульс метаемому телу 5 и приводящее его в движение. Плазма сильноточного разряда сжимается магнитным полем собственного тока и приобретает грибообразную форму. Разряд можно разделить на две части - плазменный жгут 18 (Z-пинч), являющийся продолжением центрального электрода, и плазменную круговую перемычку 19. Такого типа сильноточный разряд под действием электродинамических сил ускоренно углубляется в канал ствола, толкая метаемое тело 5. В предложенном устройстве цилиндрическая стенка корпуса 6 узла центрального электрода 2, выполненная из магнитной стали, перекрывающая зону размещения плавкого элемента и формирования плазменной структуры, экранирует эту зону в течение некоторого времени (десятки микросекунд и более) в зависимости от толщины магнитного материала и исключает вращение грибообразной плазменной перемычки, уменьшая эрозию ствола и обеспечивая усиление начальной динамики разгона. Изготовление остальных металлических элементов конструкции ускорителя из немагнитных материалов позволяет усилить магнитное поле соленоида и уменьшить потери энергии.
Постоянство поперечного электрического сопротивления единицы длины части ствола, охваченной индуктором, необходимо для исключения усиления азимутальной составляющей магнитного поля в канале ствола. Оно может произойти в результате резкого изменения поперечного сопротивления (ступенчатого изменения поперечного сечения) стенки ствола и стать препятствием на пути перемещения токонесущей плазменной перемычки 19.
При размещении части узла центрального электрода с зоной расположения плавкой перемычки в выемке донной части металлического метаемого тела (фиг. 3) электровзрывной и электротермический эффекты усиливаются за счет повышения статического давления газа в этой выемке, который начинает совершать работу расширения лишь после обрыва стенки выемки на границе со сплошной частью метаемого тела. Кроме того, такая форма метаемого тела обеспечивает удобства при зарядке и сборке ускорителя.
Электровзрывной и электротермический эффекты также значительно усиливаются при заполнении зоны размещения плавкого элемента водородонасыщенным веществом. Высвобождающийся при термическом разложении водород, нагреваясь от разряда, накапливает энергию, а затем, расширяясь, совершает работу преобразования ее в кинетическую, по аналогии с легкогазовыми метательными устройствами.
Предложенное устройство испытано в следующих условиях:
- емкость конденсаторной батареи 48•10-3 Ф;
- зарядное напряжение 2750 В;
- индуктивность разрядного контура 3,2•10-6 Гн;
- индуктивность соленоида ~ 2,84•10-6 Гн;
- длина соленоида 300 мм;
- внутренний диаметр соленоида 85 мм;
- длина ствола ускорителя 400 мм;
- калибр ствола 17 мм;
- масса метаемого тела 16,2 г;
- материал метаемого тела - медь.
Метаемое тело было ускорено до 1,6 км/с, приобретя кинетическую энергию 20,74 кДж. За время нахождения тела в стволе ускорителя на его разгон была затрачена энергия 135 кДж, КПД преобразования затраченной энергии составил 15,4%.
При выполнении донной части метаемого тела 5 с углублением (фиг. 3) в аналогичных условиях КПД возрастает до 16%.
При заполнении зоны размещения плавкой перемычки 3 водородонасыщенным веществом 17%, а именно трансформаторным маслом, КПД возрастает до 16,5-17%.

Claims (4)

1. Коаксиальный ускоритель, выполненный в виде коаксиально размещенного внутри соленоида цилиндрического электропроводящего ствола, внутри которого размещены метаемое тело и плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя, цепь питания второй клеммой присоединена к концу соленоида, удаленному от центрального электрода, второй конец соленоида электрически соединен с началом ствола, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола, отличающийся тем, что корпус узла центрального электрода выполнен из магнитного материала, а остальные металлические элементы ускорителя - из немагнитных материалов, причем прикрепленная к цилиндрическому электропроводящему стволу часть корпуса узла центрального электрода перекрывает зону размещения плавкой перемычки, а поперечное электрическое сопротивление стенки единицы длины ствола постоянно по всей длине ствола, охваченной соленоидом, включая зону сопряжения с корпусом узла центрального электрода.
2. Коаксиальный ускоритель по п.1, отличающийся тем, что плавкая перемычка выполнена в виде расходящихся от центрального электрода проволочек, огибающих торцевую часть изолятора центрального электрода, обращенную к метаемому телу.
3. Коаксиальный ускоритель по пп.1 и 2, отличающийся тем, что донная часть метаемого тела выполнена с углублением, в котором размещена плавкая перемычка.
4. Коаксиальный ускоритель по пп.1- 3, отличающийся тем, что зона размещения плавкой перемычки заполнена водороднасыщенным веществом.
RU99103985/02A 1999-02-24 1999-02-24 Коаксиальный ускоритель сивкова RU2150652C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99103985/02A RU2150652C1 (ru) 1999-02-24 1999-02-24 Коаксиальный ускоритель сивкова

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99103985/02A RU2150652C1 (ru) 1999-02-24 1999-02-24 Коаксиальный ускоритель сивкова

Publications (1)

Publication Number Publication Date
RU2150652C1 true RU2150652C1 (ru) 2000-06-10

Family

ID=20216495

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99103985/02A RU2150652C1 (ru) 1999-02-24 1999-02-24 Коаксиальный ускоритель сивкова

Country Status (1)

Country Link
RU (1) RU2150652C1 (ru)

Similar Documents

Publication Publication Date Title
EP0876663B1 (en) Apparatus for generating a plasma
US5425570A (en) Method and apparatus for plasma blasting
US4343223A (en) Multiple stage railgun
WO1997012372A9 (en) A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
Fowler et al. Introduction to explosive magnetic flux compression generators
US7926258B1 (en) Advanced pulsed plasma thruster with high electromagnetic thrust
US5549046A (en) Plasma generator for electrothermal gun cartridge
US4621577A (en) Miniature plasma accelerating detonator and method of detonating insensitive materials
CN203758390U (zh) 爆炸丝起爆装置
RU2150652C1 (ru) Коаксиальный ускоритель сивкова
CN103925856A (zh) 爆炸丝起爆装置
US4406952A (en) Opening switch for interrupting current using a plasma focus device
CN1358058A (zh) 毛细管等离子发生器
RU61856U1 (ru) Коаксиальный магнитоплазменный ускоритель
RU2243474C1 (ru) Коаксиальный ускоритель
CN106057396B (zh) 高温等离子气体超导电磁线圈及微波脉冲发生装置
McCauley et al. Compact electroexplosive fuses for explosively driven pulsed power
RU2183311C2 (ru) Коаксиальный ускоритель
RU2119140C1 (ru) Коаксиальный ускоритель
RU2204777C2 (ru) Коаксиальный ускоритель сивкова
CN1053254C (zh) 用于油井解堵的井下放电器
EP0366755A4 (en) Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets
CA2230906C (en) A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
Frost et al. A Proof-of-Concept Repetitive Pressure Source Based on Underwater Aluminum Exploding Wire
RU2166181C2 (ru) Устройство для зажигания топлив

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050225