RU2150579C1 - Способ регулирования проницаемости пласта - Google Patents

Способ регулирования проницаемости пласта Download PDF

Info

Publication number
RU2150579C1
RU2150579C1 RU98100539/03A RU98100539A RU2150579C1 RU 2150579 C1 RU2150579 C1 RU 2150579C1 RU 98100539/03 A RU98100539/03 A RU 98100539/03A RU 98100539 A RU98100539 A RU 98100539A RU 2150579 C1 RU2150579 C1 RU 2150579C1
Authority
RU
Russia
Prior art keywords
oil
brine
formation
salts
water
Prior art date
Application number
RU98100539/03A
Other languages
English (en)
Other versions
RU98100539A (ru
Inventor
В.Н. Хлебников
Р.Х. Алмаев
В.С. Асмоловский
Ф.Х. Сайфутдинов
Л.В. Базекина
Original Assignee
Акционерная нефтяная компания "Башнефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерная нефтяная компания "Башнефть" filed Critical Акционерная нефтяная компания "Башнефть"
Priority to RU98100539/03A priority Critical patent/RU2150579C1/ru
Publication of RU98100539A publication Critical patent/RU98100539A/ru
Application granted granted Critical
Publication of RU2150579C1 publication Critical patent/RU2150579C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности, в частности к способам регулирования проницаемости пласта, применяемым для повышения нефтеотдачи неоднородных нефтяных пластов. Способ регулирования проницаемости пласта заключается в закачке в пласт предварительно приготовленной смеси щелочного стока производства капролактама или пластификатора адипинового щелочного и водного раствора солей, причем в качестве водного раствора солей используют рассол техногенного или природного происхождения, в том числе сточные или закачиваемые воды нефтяных месторождений с плотностью не менее 1090 кг/м3 или растворы солей многовалентных катионов. Технический результат - повышение эффективности воздействия способа на средней и поздней стадиях разработки нефтяных месторождений с неоднородными пластами. 4 табл.

Description

Изобретение относится к нефтедобывающей промышленности, в частности к способам регулирования проницаемости пласта, применяемым для повышения нефтеотдачи неоднородных нефтяных пластов.
Известны способы регулирования проницаемости пласта и изоляции водопритоков, основанные на применении силикатно-щелочных реагентов, водорастворимых полимеров, полимердисперсных систем и т.д. (А.Т. Горбунов, Л.Н. Бученков "Щелочное заведение".- М.: Недра, 1989 , Ю.А. Поддубный, В.М. Сазонова и др. "Применение новых водоизолирующих материалов для ограничения притока вод в нефтяные скважины".- М.: ВНИИОЭНГ, сер. "Нефтепромысловое дело", 1977, 62 с.) В способе разработки обводненной нефтяной залежи (патент РФ N 2039224, E 21 B 43/22, 33/138) предлагается последовательно закачивать в пласт водный раствор солей многовалентных катионов (в том числе алюмохлорид - отход алкилирования бензола), щелочные стоки производства капролактама (ЩСПК) и вытесняющий агент.
Недостатком известных технических решений является недостаточная технологическая и экономическая эффективность.
В составе для вытеснения нефти из пласта (патент РФ N 2060375, E 21 B 43/22) предлагается для осуществления более равномерного продвижения фронта вытеснения нефти из неоднородных пластов закачивать 4-99,9% раствор ЩСПК в воде. Данный состав неэффективен на месторождениях с малоактивными нефтями и на поздних стадиях разработки нефтяных месторождений.
Наиболее близким по технической сущности к заявляемому способу является способ разработки обводненной нефтяной залежи (А.с СССР N 1596875, E 21 B 43/22), согласно которому предлагается проводить последовательную закачку ЩСПК и водного раствора многовалентного металла, в том числе 20-50% раствора хлорида кальция.
Недостатком его является недостаточная эффективность при использовании на месторождениях на поздней стадии разработки.
Задачей изобретения является повышение эффективности воздействия. Указанная задача решается закачкой в пласт щелочного реагента - щелочного отхода производства капролактама (ЩОПК) и водного раствора солей - рассола, причем перед закачкой в пласт реагенты предварительно смешивают.
ЩОПК являются крупнотоннажными отходами производства капролактама и выпускается под наименованием ЩСПК (ТУ 113-03-488-84) или (в последнее время) пластификатор адипиновый щелочной (ТУ 2433-637-002090023-97). Характеристика ЩОПК приведена в табл. 1.
В качестве рассола используется минерализованная вода техногенного или природного происхождения, в том числе сточная или закачиваемая вода нефтяных месторождений с плотностью не менее 1090 кг/м3 или растворы солей многовалентных катионов.
Способ осуществляется следующим образом. ЩОПК и рассол непосредственно перед закачкой в пласт смешиваются с помощью смесительных устройство или ЩОПК дозируется в трубопровод с нагнетаемой в пласт минерализованной водой (рассолом).
Заявляемый способ отличается от известных технических решений тем, что смешение реагентов (ЩОПК и рассола) производится на поверхности в заданных соотношениях и в контролируемых условиях, а в известных технических решениях и прототипе реагенты (ЩОПК и растворы солей многовалентных материалов) закачивают последовательно и их смешение происходит в результате некотролируемых процессов в пласте, а также тем, что для разбавления ЩОПК используется не пресная вода, а минерализованный водный раствора (рассол).
Эффективность достигается следующим образом. В результате смешения ЩОПК и рассола образуется подвижная дисперсная система, обладающая высоким фильтрационным сопротивлением. В отличие от прототипа дисперсная система готовится перед закачкой на устье скважины, а не образуется в неконтролируемом процессе смешения оторочек ЩОПК и солесодержащих растворов в пласте. Приготовление смеси ЩОПК и рассола на устье скважины позволяет получать закачиваемую смесь с оптимальными характеристиками. Кроме того, смешение ЩОПК и рассола в поверхностных условиях (когда размер смесителя значительно превосходит размеры дисперсных частиц) приводит к образованию дисперсной системы с более крупными агрегатами (частицами осадка), чем при образовании дисперсной системы в пористой среде (когда размеры пор пласта и дисперсных частиц сопоставимы). Смешение ЩОПК и рассола перед закачкой также уменьшает потери реагента в сорбционных процессах в пласте. Вышеизложенное повышает эффективность воздействия и (или) позволяет уменьшить объем закачки реагентов. Применение заявляемого способа способствует выравниванию фронта заводнения, вытеснению остаточной нефти, уменьшению обводненности продукции, уменьшению непроизводительной закачки воды и вовлечению в разработку плохо дренированных участков пласта.
Способ регулирования проницаемости пласта может быть применен на средней и поздней стадиях разработки нефтяных месторождений с неоднородными пластами.
Эффективность способа определяют экспериментально по нижеописанным методикам. Результаты исследований приведены в табл. 2-4.
Пример 1
В фильтрационных экспериментах применяли линейные насыпные модели пласта Арланского месторождения. Подготовку моделей пласта к экспериментам проводили по общепринятым методикам. Эксперимент проводили при 20o C и постоянной средней скорости фильтрации.
Через модель пласта фильтровали арланскую закачиваемую воду (плотность 1116 кг/м3) до стабилизации перепада давления. Затем в модель закачивали свежеприготовленную смесь ЩОПК и рассола и опять фильтровали минерализованную воду. После чего фильтрацию останавливали, что необходимо для протекания процессов образования и старения осадков. Затем через модель фильтровали минерализованную воду до стабилизации перепада давления. Действие способа оценивали по изменению проницаемости модели плата в результате воздействия:
Fост. = k1/k2,
где Fост. - остаточное фильтрационное сопротивление, k1 и k2 - проницаемость модели по воде до и после воздействия и по максимальному фильтрационному сопротивлению (Fmax.):
Fmax= (ΔPm/Qm)/(ΔP1/Q1),
где ΔP1 - перепад давления при первоначальной фильтрации воды, ΔPm - максимальный перепад давления в ходе закачки и продавки композиции, Qm - скорость фильтрации при достижении ΔPm, Q1 - средняя скорость фильтрации.
Результаты эксперимента приведены в табл.2.
В ходе закачки смеси ЩОПК и рассола в модель пласта происходит резкий рост перепада давления (ΔP), т. е. снижение проницаемости пласта. Данное явление наблюдается и при испытании заявляемого способа на высокопроницаемой модели пласта. Применение заявляемого способа создает значительное остаточное сопротивление фильтрации. Проницаемость моделей пласта снижается в 11,8-15 раз, причем длительная выдержка моделей (для старения осадков) и фильтрация больших объемов воды не приводит к повышению проницаемости.
Для сравнения проведено испытание прототипа, причем в качестве раствора солей многовалентных металлов использовали минерализованную воду Арланского месторождения (содержащую ионы кальция и магния), а также 20% раствор хлористого кальция. Сопоставление результатов фильтрационного испытания заявляемого способа и прототипа показывает, что заявляемый способ в большей степени регулирует (снижает) проницаемость пористых сред, чем прототип. Закачка двух оторочек ЩОПК по 0,2 п.о. по прототипу приводит к небольшому изменению проницаемости модели пласта (общее снижение в 1,5 раз). Состав оторочки осадителя (минерализованная вода или раствор хлорида кальция) практически не оказывает влияния на эффективность воздействия. Закачка по заявляемому способу смесей ЩОПК + рассол, содержащих 0,1-0,2 п.о. ЩОПК, приводит к значительно большему эффекту (Fост. равен 11,8-15), что указывает на эффективность заявляемого способа.
Пример 2
Фильтрационное сопротивление и остаточное сопротивление при движении смеси ЩОПК и рассола в пласте в значительной степени определяется объемной долей твердой фазы, осаждающейся из смеси. Оценку объемной доли твердой фазы, образующейся при смешении ЩОПК и рассола, проводили по следующей методике. Смесь готовили в мерных приборках путем смешения в различных соотношениях ЩОПК и рассолов различного состава. Затем пробирки выдерживали в покое в течение 10 суток при температуре 20-22o C. Данное время выдержки достаточно для полного осаждения твердых частиц из смеси и завершения процессов уплотнения образовавшегося осадка. Объемную долю осадков определяли визуально. Результаты эксперимента приведены в табл.3.
Полученные данные показывают, что при плотности минерализованной воды (использованной в качестве рассола) менее 1090 кг/м3 образуется небольшое количество твердой фазы (осадка), т.е. использование низкоминерализованных вод в качестве рассола будет недостаточно эффективно. По мере роста концентрации хлорида кальция в рассоле заметно увеличивается объем осадка при содержании рассола в смеси, равном 10-40%. При большем содержании рассола в смеси объем осаждаемой твердой фазы мало зависит от концентрации хлористого кальция, что свидетельствует о практически полном осаждении ЩОПК. Рост плотности минерализованной воды также уменьшает долю рассола в смеси ЩОПК, необходимую для достижения максимального содержания твердой фазы в смеси. Таким образом, меняя соотношение ЩОПК : рассол, состав и свойства рассола, можно менять характеристики закачиваемой смеси и подбирать оптимальные соотношения ЩОПК: рассол и характеристики рассола для геолого-физических условий конкретного месторождения.
Пример 3
Важной характеристикой для смесей, предназначенных для закачки в пласт, является вязкость. Исследование реологических характеристик смесей ЩОПК и рассола проводили с помощью ротационного вискозиметра "Реотест-2". Данные приведены в таблице 4.
Полученные данные показывают, что по мере роста плотности использованной в качестве рассола минерализованной воды происходит рост вязкости смеси. Повышенная вязкость смеси ЩОПК и рассола способствует повышению регулирующей проницаемость пласта эффективности способа.
Полученные данные подтверждают высокую эффективность заявляемого способа. Применение способа в нефтедобывающей промышленности позволит:
- повысить эффективность извлечения нефти из неоднородных коллекторов;
- уменьшить обводненность добываемой продукции и непроизводительную закачку воды;
- квалифицированно использовать вторичные материальные ресурсы (отходы) нефтехимической промышленности;
- улучшить охрану окружающей среды.

Claims (1)

  1. Способ регулирования проницаемости пласта, включающий закачку в пласт щелочного отхода производства капролактама и водного раствора солей, отличающийся тем, что перед закачкой в пласт щелочной отход производства капролактама и водный раствор солей смешивают, а в качестве водного раствора солей используют рассол техногенного или природного происхождения, в том числе сточную или закачиваемую воды нефтяных месторождений с плотностью не менее 1090 кг/м3 или растворы солей многовалентных катионов.
RU98100539/03A 1998-01-15 1998-01-15 Способ регулирования проницаемости пласта RU2150579C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98100539/03A RU2150579C1 (ru) 1998-01-15 1998-01-15 Способ регулирования проницаемости пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98100539/03A RU2150579C1 (ru) 1998-01-15 1998-01-15 Способ регулирования проницаемости пласта

Publications (2)

Publication Number Publication Date
RU98100539A RU98100539A (ru) 1999-11-10
RU2150579C1 true RU2150579C1 (ru) 2000-06-10

Family

ID=20201126

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98100539/03A RU2150579C1 (ru) 1998-01-15 1998-01-15 Способ регулирования проницаемости пласта

Country Status (1)

Country Link
RU (1) RU2150579C1 (ru)

Similar Documents

Publication Publication Date Title
US4401789A (en) Enhanced oil recovery methods and systems
US4395340A (en) Enhanced oil recovery methods and systems
US4439334A (en) Enhanced oil recovery methods and systems
RU2476665C2 (ru) Способ изоляции водопритока в скважине
RU2670808C1 (ru) Способ увеличения нефтеотдачи пластов (варианты)
USRE32114E (en) Oil recovery process
Stavland et al. In-depth water diversion using sodium silicate–Preparation for single well field pilot on Snorre
US4433727A (en) Oil recovery process
US4580627A (en) Oil recovery process and system
Nasr-El-Din et al. Field application of gelling polymers in Saudi Arabia
RU2348792C1 (ru) Способ селективной изоляции водопритока к добывающим нефтяным скважинам
US4095651A (en) Process for selectively plugging areas in the vicinity of oil or gas producing wells in order to reduce water penetration
RU2150579C1 (ru) Способ регулирования проницаемости пласта
US4687586A (en) Oil recovery process and system
US4051901A (en) Process for water treatment in mobility controlled caustic flooding process
US4503909A (en) Oil recovery process and system
RU2167280C2 (ru) Способ разработки неоднородной залежи углеводородов
RU2716316C1 (ru) Способ разработки нефтяного месторождения
RU2111351C1 (ru) Способ изоляции притока пластовых вод
RU2140535C1 (ru) Состав для регулирования проницаемости пласта
RU2168617C2 (ru) Способ разработки нефтяного месторождения
RU2147671C1 (ru) Состав для регулирования проницаемости пласта и изоляции водопритоков
RU2747726C1 (ru) Состав для потоковыравнивающих работ в нагнетательных скважинах
RU2149980C1 (ru) Состав для регулирования проницаемости неоднородного пласта
RU2823606C1 (ru) Состав для водоизоляции в призабойной зоне пласта месторождений с минерализованной водой

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050116