RU2140735C1 - Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы - Google Patents

Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы Download PDF

Info

Publication number
RU2140735C1
RU2140735C1 RU98101421A RU98101421A RU2140735C1 RU 2140735 C1 RU2140735 C1 RU 2140735C1 RU 98101421 A RU98101421 A RU 98101421A RU 98101421 A RU98101421 A RU 98101421A RU 2140735 C1 RU2140735 C1 RU 2140735C1
Authority
RU
Russia
Prior art keywords
ponds
fish
complex
cleaning
sewage water
Prior art date
Application number
RU98101421A
Other languages
English (en)
Other versions
RU98101421A (ru
Inventor
Ю.М. Субботина
И.Р. Смирнова
В.Н. Виноградов
А.В. Мазур
Л.С. Чистова
Т.Н. Лесина
Original Assignee
Всероссийский научно-исследовательский институт ирригационного рыбоводства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт ирригационного рыбоводства filed Critical Всероссийский научно-исследовательский институт ирригационного рыбоводства
Priority to RU98101421A priority Critical patent/RU2140735C1/ru
Publication of RU98101421A publication Critical patent/RU98101421A/ru
Application granted granted Critical
Publication of RU2140735C1 publication Critical patent/RU2140735C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

Изобретение относится к очистке сточных вод и рыбоводству. Способ предусматривает прохождение сточной жидкости через водорослевые пруды, в которые вносят адаптированный альгологический комплекс из диатомовых зеленых и протококковых водорослей при контактном режиме работы. Затем очищают жидкость в рачковых прудах, которые инокулируют культурой Daphnia magna. После 30 - 40 дней биологической очистки сточные воды используют для выращивания рыбопосадочного материала. Для этого производят одновременное зарыбление прудов трехдневной личинкой карпа с плотностью посадки 30 - 40 тыс.шт/га или карпо-карася не более 30 тыс.шт/га и растительноядных рыб - 10 тыс.шт/га. Сточная жидкость проходит через ботаническую площадку с высшей водной растительностью, размещенную между рачковыми и рыбоводными прудами. Изобретение позволит повысить эффективность процесса очистки сточных вод, снизить затраты на очистку стоков и кормление рыбы. 1 з.п. ф-лы, 1 ил., 3 табл.

Description

Изобретение относится к способам очистки сточных вод животноводческих комплексов и может быть использовано для очистки жидких стоков свинокомплексов, ферм и птицефабрик.
Известны способы очистки навозных стоков, предусматривающие механическую и биологическую очистку в пруду-накопителе, водорослевых прудах микроводорослями (А.с. СССР N 1182007, C 02 F 3/32), рачковых прудах с помощью зоопланктона (А.с. СССР N 1419981, C 02 F 3/32), ботанической площадкой с высшей водной растительностью (А. с. СССР N 1837050, C 02 F 3/32). Эти способы не используют образующуюся высокую биомассу водорослей, зоопланктона, бентоса из-за трудоемкости их механического отделения, а большое накопление биомассы микроводорослей и зоопланктона вызывает вторичное загрязнение водоемов, и не получают дополнительного ценного белкового продукта - рыбы.
Наиболее близким техническим решением является способ очистки навозных стоков, осуществляющий механическое осветление с последующей очисткой в водорослевом, рачковом, рыбоводном и чистой воды прудах (А. с. СССР N 1824380, C 02 F 3/32, A 01 K 61/00), где после очистки в рачковом пруду стоки разделяют на поток биомассы рачков и поток фильтрата, последний обрабатывают в водорослевом пруду 2 ступени, смешивают с потоком биомассы рачков, а смесь выдерживают 1 - 2 сутки перед подачей в рыбоводный пруд.
Однако известный способ имеет следующие недостатки: значительная продолжительность биологической очистки в водорослевых и рачковых прудах - 50 и 60 суток соответственно, трудоемкость разделения потока ракообразных и потока фильтрата, использование водорослевых прудов I и II ступени.
Сущность изобретения состоит в том, что сточные воды животноводческих комплексов, ферм и птицефабрик проходят через серию рыбоводно-биологических прудов, в водорослевые пруды вносится адаптированный альгологический комплекс из диатомовых, зеленых и протококковых водорослей при контактном режиме работы. Рачковые пруды инокулируют культурой Daphnia magna, после 30 - 40 дней биологической очистки сточные воды используют для выращивания рыбопосадочного материала в рыбоводном пруду. Зарыбление рыбоводного пруда происходит одновременно трехдневной личинкой карпа с плотностью посадки 30 - 40 тыс. шт/га или карпо-карася не более 30 тыс. шт/га и растительноядными рыбами 10 тыс. шт/га, при этом сточная жидкость проходит через ботаническую площадку с высшей водной растительностью, размещенную между рачковым и рыбоводными прудами.
Адаптированный альгологический комплекс из диатамовых, зеленых и проктококковых водорослей вносят в соотношении 1:3:1 из расчета 500 мг на 50 м3 стоков при глубине приду 50 - 60 см и контактном режиме 5 - 11 дней.
На чертеже показана схема замкнутой системы очистки свинокомплекса на 24 тыс. голов в рыбоводно-биологических прудах, где 1 - свинокомплекс, 2 - навозосборники, 3 - отстойники-накопители, 4 - насосная станция, 5 - площадка компостирования, 6 - площадка промывки щебня, 7 - пруды-накопители осветленных стоков, 8 - секционные водорослевые пруды, 9 - секционные рачковые пруды, 10 - распределительное устройство, 11 - ботаническая площадка с высшей водной растительностью, 12 - борозды с перемычками, 13 - рыбоводные пруды, 14 - пруд чистой воды, 15 - напорный трубопровод, 16 - задвижка.
Предлагаемый способ осуществляется следующим образом.
Сточные воды, пройдя отстаивание и механическую очистку 2 - 6 из прудов-накопителей 7, поступают в водорослевые пруды 8, где для ускорения биологический очистки вносят адаптированный альгологический комплекс из диатомовых, зеленых и протококковых водорослей. Из водорослевых прудов стоки, обогащенные фитопланктоном и частично растворенными органическими веществами поступают в рачковые пруды 9. В первый год эксплуатации рачковые пруды инокулируют культурой Daphnia magna. При наличии большой биомассы микороводорослей и массовых колоний рачков значительно возрастают скорость и эффективность очистки. С целью более глубокой доочистки сточных вод используют ботаническую площадку с высшей водной растительностью или многолетними травами 11. После перечисленных ступеней очистки вода, обогащенная микроводорослями и биогенами, используется для выращивания рыбы. За счет внесения адаптированного комплекса микроводорослей и инокуляции Daphnia magna при контактном режиме работы происходит значительное сокращение сроков очистки - до 30 - 40 дней. В рыбоводных прудах 13 выращивают карпа, карпо-карася, растительноядных рыб. Введение в экосистему пруда растительноядных стабилизирует гидрохимический режим, рыба, поедая микроводоросли и зоопланктон, наращивает свою биомассу, исключает вторичное загрязнение водоема, возникающее при отмирании водорослей и зоопланктона.
Пример 1. Сточные воды с ХПК 4160 мг O2/л и концентрацией бактерий E. colii в количестве 10-5 - 10-6 млн.мк.кл/г (по коли-титру) направляются последовательно в секционные водорослевые пруды. В первый год эксплуатации в каждый из девяти водорослевых прудов вносится адаптированный альгологический комплекс из диатомовых, зеленых и протококковых водорослей в соотношении 1: 3: 1, из расчета 500 мг на 50 м3 стоков. Водорослевые пруды по мере заполнения переводятся на контактный режим работы до полного обеззараживания воды от 5 до 11 дней, при глубине заполнения пруда на 50 - 60 см. Внесенный альгологический комплекс обладает более широким диапазоном воздействия на сточные воды, чем каждый из входящих в его состав видов водорослей. Водоросли активно используют биогенные вещества стоков, выделяя при этом кислород, который является основным стимулятором разрушения органического вещества.
В водорослевых прудах ХПК снижается до 800 - 400 мг O2/л, из водорослевых прудов стоки, обогащенные фитопланктоном, поступают в секционные рачковые пруды 9. В первый год эксплуатации рачковые пруды инокулируют культурой Daphnia magna. При наличии богатого питательного субстрата и массовых колоний рачков происходит дальнейшее расщепление органического вещества. Инокулированные рачки действуют как естественный бактериальный фильтр, уменьшая в несколько раз количество органического вещества и условно-патогенной и санитарно-показательной микрофлоры, коли-титр уменьшается с 10-3 до 10-2 млн.мк.кл/г, биомасса зоопланктона возрастает до 150 мг/л (табл. 1).
Для более глубокой очистки сточных вод используют ботаническую площадку с высшей водной растительностью (Рогоз узколистный и Тростник обыкновенный). Ботаническая площадка включает элементы почвенной очистки с использованием в качестве биофильтров высшей водной растительности. Водопочвенная среда благодаря высшей водной растительности обогащается кислородом, в ней происходит процесс окисления. Время контакта сточной жидкости с Тростником и Рогозом от 5 до 12 суток. При прохождении сточной жидкости через Тростник и Рогоз гидрохимические и бактериологические показатели снижаются: ХПК до 100 - 120 мг O2/л, коли-титр 10-1 млн.мк.кл/л (табл. 1). Далее очищенные и обеззараженные сточные воды с ботанической площадки поступают в рыбоводные пруды, где и происходит выращивание рыбопосадочного материала. Рыбоводные пруды 13 первоначально заполняют чистой водой из реки за 6 - 8 дней до посадки туда трехдневных личинок. Чистой водой пруды заливают на 2/3, а затем на протяжении дву-трех недель после посадки личинок заполняют их полностью биологически очищенными сточными водами, которые поступают в рыбоводные пруды по мере очистки из вышерасположенных биологических прудов и площадки с высшей водной растительностью. Зарыбление проводят в конце мая.
В рыбоводных прудах подращивают карпа или карпо-карася и растительноядных рыб: пестрого и белого толстолобика и их гибридов.
Согласно разработанной технологии предлагается следующая плотность посадки трехдневных личинок: карпа 30 - 40 тыс. шт/га или карпо-карася не более 30 тыс. шт/га и растительноядных 10 тыс. шт/га. Личинок карпа и растительноядных рыб сажают в пруд одновременно. Выход продукции сеголеток массой 20 - 25 г составляет 60 - 70% от посадки. Рыбопродуктивность 8 - 10 ц/га. Результаты выращивания сеголеток приведены в табл. 2.
Пример 2. Сточные воды отстаиваются, проходят механическую очистку, затем последовательно все ступени биологической очистки: пруды-накопители, водорослевые, рачковые пруды, ботаническую площадку и рыбоводные пруды. В последней ступени очистки - рыбоводных прудах производят подращивание трехдневной личинки карпа в монокультуре. Подращивание карпа осуществляют при различной плотности посадки (табл. 3): 30 - 40 тыс.шт/га, 100 и 200 тыс. шт/га. Лучшие рыбоводные показатели получают при плотности посадки 30 - 40 тыс. шт/га, рыбопродуктивность 6 ц/га. Санитарно-гидрохимические и бактериологические показатели очищенных стоков уступают показателям, полученным в примере 1, ХПК - 30 - 40 мг O2/л, коли-титр 10 млн.мк.кл/л.
Пример 3. Сточные воды очищают аналогично примерам 1 и 2, и отличается это тем, что рыбоводные пруды не зарыбляют в течение всего сезона. В данном примере имеет место ухудшение санитарно-гидрохимических и бактериологических показателей: ХПК - 120 - 80 мг O2/л, коли-тит 1,0 млн.мк.кл/л, pH возрастает до 9,2, резко увеличивается содержание аммонийного азота до 22,8 мг/л. Высокая биомасса микроводорослей и зоопланктона, не будучи удаленной рыбой или механически, отмирает, вызывая вторичное загрязнение и ухудшение гидрохимических показателей.
В предлагаемом способе очистки сточных вод животноводческих комплексов, ферм и птицефабрик в рыбоводно-биологических прудах сокращаются сроки очистки до 30 - 40 дней, повышается эффективность очистки сточных вод от органических веществ, минеральных солей и патогенных микроорганизмов благодаря адаптированному комплексу микроводорослей, зоопланктону, высшей водной растительности, а также рыбе. Выращиваемая рыба в поликультуре с растительноядными устраняет вторичное загрязнение, возникающее при отмирании микроводорослей и зоопланктона. Растительноядные отфильтровывают фитопланктон, детрит, органику, изменяют ход биопродукционных процессов.
В результате выращивания карпа в поликультуре с растительноядными рыбопродуктивность с 6 ц/га возрастает до 8 - 10 ц/га, стабилизируются гидрохимический и санитарно-бактериологический режимы, снижается pH воды до 8,0, улучшается санитарно-гигиеническое состояние прудов и сбрасываемой воды, сохраняя экологически чистой окружающую среду.

Claims (2)

1. Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик, предусматривающий прохождение сточной жидкости через серию рыбоводно-биологических прудов, отличающийся тем, что в водорослевые пруды вносят адаптированный альгологический комплекс из диатомовых, зеленых и протококковых водорослей при контактном режиме работы, рачковые пруды инокулируют культурой Daphnia magna, после 30-40 дней биологической очистки сточные воды используют для выращивания рыбопосадочного материала при одновременном зарыблении трехдневной личинкой карпа с плотностью посадки 30-40 тыс. шт/га или карпо-карася не более 30 тыс. шт/га и растительноядных рыб 10 тыс. шт/га, при этом сточная жидкость проходит через ботаническую площадку с высшей водной растительностью, размещенную между рачковыми и рыбоводными прудами.
2. Способ по п.1, отличающийся тем, что адаптированный альгологический комплекс из диатомовых, зеленых и протококковых водорослей вносят в соотношении 1:3:1 из расчета 500 мг на 50 м3 стоков при глубине пруда 50-60 см и контактном режиме 5-11 дней.
RU98101421A 1998-01-13 1998-01-13 Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы RU2140735C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98101421A RU2140735C1 (ru) 1998-01-13 1998-01-13 Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98101421A RU2140735C1 (ru) 1998-01-13 1998-01-13 Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы

Publications (2)

Publication Number Publication Date
RU98101421A RU98101421A (ru) 1999-10-27
RU2140735C1 true RU2140735C1 (ru) 1999-11-10

Family

ID=20201597

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98101421A RU2140735C1 (ru) 1998-01-13 1998-01-13 Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы

Country Status (1)

Country Link
RU (1) RU2140735C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4015C2 (ru) * 2009-02-20 2010-09-30 Государственный Университет Молд0 Способ очистки сточных вод от аммонийного азота
RU2504519C1 (ru) * 2012-10-29 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ биологической доочистки сточных вод и система для его осуществления
CN105432529A (zh) * 2015-12-23 2016-03-30 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 一种淡水龙虾的养殖技术
CN107445302A (zh) * 2017-07-26 2017-12-08 中国科学院水生生物研究所 集约化养猪场废水多级生态农业消纳塘及其方法
CN108401970A (zh) * 2018-04-24 2018-08-17 中国水产科学研究院黄海水产研究所 一种鱼虾藻鲍参循环水生态综合养殖系统
CN108496855A (zh) * 2018-03-16 2018-09-07 湛江渔宝现代渔业科技有限公司 一种金鲳鱼深水网箱养殖方法
CN109169439A (zh) * 2018-09-05 2019-01-11 浙江万里学院 一种利用对虾养殖尾水的水平流贝类养殖系统
CN109368962A (zh) * 2018-12-18 2019-02-22 河南小威环境科技有限公司 一种污泥处置方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4015C2 (ru) * 2009-02-20 2010-09-30 Государственный Университет Молд0 Способ очистки сточных вод от аммонийного азота
RU2504519C1 (ru) * 2012-10-29 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ биологической доочистки сточных вод и система для его осуществления
CN105432529A (zh) * 2015-12-23 2016-03-30 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 一种淡水龙虾的养殖技术
CN107445302A (zh) * 2017-07-26 2017-12-08 中国科学院水生生物研究所 集约化养猪场废水多级生态农业消纳塘及其方法
CN108496855A (zh) * 2018-03-16 2018-09-07 湛江渔宝现代渔业科技有限公司 一种金鲳鱼深水网箱养殖方法
CN108401970A (zh) * 2018-04-24 2018-08-17 中国水产科学研究院黄海水产研究所 一种鱼虾藻鲍参循环水生态综合养殖系统
CN109169439A (zh) * 2018-09-05 2019-01-11 浙江万里学院 一种利用对虾养殖尾水的水平流贝类养殖系统
CN109368962A (zh) * 2018-12-18 2019-02-22 河南小威环境科技有限公司 一种污泥处置方法

Similar Documents

Publication Publication Date Title
CN104521832A (zh) 一种鱼苗、成鱼养殖方法
CN109122443B (zh) 澳洲淡水龙虾循环水抱卵孵化系统及育苗方法
CN113213710A (zh) 海水工厂化大棚养殖南美白对虾尾水处理系统和方法
CN102976492A (zh) 水体生态净化系统和水体生态净化方法
CN108064796A (zh) 一种养殖箱、自净化生态养殖系统及养殖方法
CN108569820A (zh) 一种无污染养殖系统及其养殖方法
CN102415345A (zh) 一种使用水产臭氧养殖系统培育罗氏沼虾苗种的方法
CN110024733A (zh) 一种凡纳滨对虾生态工业化养殖方法和系统
RU2140735C1 (ru) Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы
CN105660357A (zh) 一种浒苔人工半咸水生态育苗法
JP2539295B2 (ja) 水産飼育用水の循環浄化方法および装置
Konsowa Ecological studies on fish farms of El-Fayoum depression (Egypt)
CN208545259U (zh) 一种无污染养殖系统
US20080194003A1 (en) System for producing food and feed
RU2721534C1 (ru) Способ водоподготовки для культивирования гидробионтов в замкнутых объемах и реализующее его устройство
CN213881396U (zh) 一种用于螺、贝类水产的周年规模化养殖系统
RU98101421A (ru) Способ очистки сточных вод животноводческих комплексов, ферм и птицефабрик с помощью адаптированного комплекса микроводорослей, высшей водной растительности, зоопланктона и рыбы
CN100522839C (zh) 鲢鱼、鳙鱼、草鱼、刚毛藻和透明溞协同控藻的方法
Ryther THE EVOLUTION OF INTEGRATED AQUACULTURE SYSTEMS 1
CN112106706A (zh) 一种用于螺、贝类水产的规模化养殖技术及周年化生产系统
CN112806185A (zh) 一种水稻生态循环养殖系统及养殖方法
CN111903578A (zh) 一种室外大规模贝苗中间培育的方法
CN109987715B (zh) 一种逐级生物操控型生态净化塘系统
CN217958357U (zh) 一种用于培育杂交鳢的养殖池塘内循环系统
CN111533241B (zh) 一种基于微酸性电解水的绿藻处理方法