RU2132581C1 - Электрический управляемый подмагничиванием трехфазный реактор - Google Patents

Электрический управляемый подмагничиванием трехфазный реактор Download PDF

Info

Publication number
RU2132581C1
RU2132581C1 RU98100385/09A RU98100385A RU2132581C1 RU 2132581 C1 RU2132581 C1 RU 2132581C1 RU 98100385/09 A RU98100385/09 A RU 98100385/09A RU 98100385 A RU98100385 A RU 98100385A RU 2132581 C1 RU2132581 C1 RU 2132581C1
Authority
RU
Russia
Prior art keywords
winding
network
reactor
section
sections
Prior art date
Application number
RU98100385/09A
Other languages
English (en)
Inventor
нцев А.М.(RU) Бр
А.М. Брянцев
Мингерт Акошевич Бики (UA)
Мингерт Акошевич Бики
А.И.(RU) Лурье
А.И. Лурье
А.Г.(RU) Долгополов
А.Г. Долгополов
Сергей Владимирович Уколов (UA)
Сергей Владимирович Уколов
Г.А.(RU) Евдокунин
Г.А. Евдокунин
Сауле Вакеновна Жакутова (KZ)
Сауле Вакеновна Жакутова
Original Assignee
Научно-технический центр Всероссийского электротехнического института им.В.И.Ленина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-технический центр Всероссийского электротехнического института им.В.И.Ленина filed Critical Научно-технический центр Всероссийского электротехнического института им.В.И.Ленина
Priority to RU98100385/09A priority Critical patent/RU2132581C1/ru
Application granted granted Critical
Publication of RU2132581C1 publication Critical patent/RU2132581C1/ru

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Использование: в линиях электропередач для компенсации реактивной мощности. Электрический управляемый подмагничиванием трехфазный реактор содержит три замкнутых однофазных стержневых магнитопровода, каждый из которых имеет два стержня, а также двухсекционную сетевую обмотку и двухсекционную обмотку управления. На каждом стержне расположены секции сетевой обмотки и секция обмотки управления. При этом секции сетевой обмотки, размещенные на каждом магнитопроводе, соединены параллельно и присоединены к трехфазной сети. Причем три секции обмотки управления на одних стержнях трех магнитопроводов соединены последовательно в открытый треугольник, а три секции обмотки управления других стержней магнитопроводов соединены последовательно во второй открытый треугольник, при этом два открытых треугольника соединены параллельно и подключены к регулируемому источнику постоянного тока подмагничивания. Технический результат заключается в уменьшении расхода активных материалов за счет упрощения обмоток, уменьшении числа источников постоянного тока при одновременном улучшении гармонического состава сетевого тока реактора. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области электротехники, в частности к электрическим реакторам, и может быть использовано для мощных шунтирующих реакторов с регулируемой реактивной мощностью, устанавливаемых, например, в линиях электропередач для компенсации реактивной мощности.
Известен электрический управляемый подмагничиванием шунтирующий реактор [1] , содержащий замкнутый однофазный магнитопровод, который имеет два стержня и два ярма, двухсекционную сетевую обмотку и многосекционную обмотку управления. На каждом стержне расположены секция сетевой обмотки и секции обмотки управления. В качестве регулируемого источника подмагничивания постоянного тока используется вспомогательный трансформатор и управляемые вентили (тиристоры), соединенные с секциями обмотки управления в соответствующую схему.
Устройство по [1] - однофазное. Поэтому в трехфазной сети необходимо применить 3 однофазных управляемых реактора. При этом необходимо использовать 3 регулируемых источника подмагничивания, что связано с усложнением трехфазного реактора, увеличением затрат материалов. Кроме того, в устройстве [1] обмотка управления имеет много секций, что усложняет реактор, повышает расходы при изготовлении реактора, а в конечном счете ведет к снижению технико-экономических показателей.
Частично недостатки устройства [1] устранены в известном трехфазном управляемом подмагничиванием реакторе [2], являющемся наиболее близким по технической сущности к предлагаемому. Он содержит три замкнутых однофазных стержневых магнитопровода, каждый из которых имеет два стержня и ярмо, а также двухсекционные обмотки. На каждом стержне расположены секция сетевой обмотки и секция еще одной обмотки (в прототипе эта обмотка называется компенсационной). Две секции сетевой обмотки, размещенные на каждом магнитопроводе, соединены параллельно и присоединены по схеме звезда к трехфазной сети. В реакторе-прототипе имеются также еще три обмотки управления, размещенные на ярмах, 3 регулируемых источника постоянного тока подмагничивания, а также компенсирующий дроссель.
Недостатками устройства [2], взятого в качестве прототипа, являются его низкие технико-экономические показатели. В устройстве [2] увеличенное число секций обмоток вызывает увеличенные затраты в производстве и расходы материалов; расположение обмоток управления на ярме, а не на стержне приводит к снижению мощности реактора, возникновению большого магнитного поля рассеяния и увеличению добавочных потерь в конструкции. Наличие компенсирующего дросселя усложняет конструкцию и приводит к недостаточной компенсации высших гармоник в токе реактора. Наличие трех источников постоянного тока усложняет схему регулирования и увеличивает расход материалов.
Целью изобретения является повышение технико-экономических показателей реактора путем уменьшения расхода активных материалов за счет упрощения обмоток и введения в них новых связей, уменьшения числа источников постоянного тока при одновременном улучшении гармонического состава сетевого тока реактора.
Поставленная цель достигается тем, что электрический управляемый подмагничиванием трехфазный реактор содержит три замкнутых однофазных стержневых магнитопровода, каждый из которых имеет два стержня, а также двухсекционную сетевую обмотку и двухсекционную обмотку управления. На каждом стержне расположены секция сетевой обмотки и секция обмотки управления. При этом секции сетевой обмотки, размещенные на каждом магнитопроводе, соединены параллельно и присоединены к трехфазной сети. Имеется также регулируемый источник подмагничивания постоянного тока.
Отличительным признаком является то, что три секции обмотки управления на одних стержнях трех магнитопроводов соединены последовательно в открытый треугольник, а три секции обмотки управления других стержней магнитопроводов соединены последовательно во второй открытый треугольник, при этом два открытых треугольника соединены параллельно и подключены к регулируемому источнику постоянного тока подмагничивания.
Для получения допустимого уровня искажения тока реактора из-за высших гармоник в номинальном режиме отношение номинальной индуктивности реактора Lн к индуктивности секции сетевой обмотки при полном насыщении стали стержня Lнасыщ. находится в пределах
1,5 < Lн/Lнасыщ. < 3,
где Lн = Uн/ωIн;
Lнасыщ = 0,5μ0W2π(Dср-a/3)2/4h;
Uн и Iн - номинальные напряжение и ток реактора;
ω = 2πf - круговая частота сети, f - частота сети;
μ0 = 0,4π•10-6Гн/м - - магнитная постоянная;
W, Dср, a и h - число витков, средний диаметр, радиальный размер и высота секции сетевой обмотки.
Новым в предлагаемом изобретении является установление новых связей между элементами - соединение двух групп секций обмотки управления в два открытых треугольника, их параллельное соединение и подключение к источнику постоянного тока подмагничивания, а также пределы отношения Lн/Lнасыщ от 1,5 до 3,0.
Новые признаки, отличающие предлагаемое изобретение от прототипа, в аналогах не выявлены. Наличие в магнитопроводах прототипа одного ярма вместо двух ярем, как это есть в предлагаемом изобретении, является не принципиальным. Так как этот признак (два ярма) есть в аналоге, то он не отражен в формуле предполагаемого изобретения.
Устройство поясняется чертежами. На фиг. 1 показана схема размещения секций обмоток на стержнях магнитопровода и их соединений, на фиг. 2 даны осциллограммы токов в секциях обмоток и индукции в стержне.
Электрический управляемый подмагничиванием трехфазный реактор состоит из трех замкнутых стержневых однофазных магнитопроводов 1, каждый из которых имеет два стержня 2 и два ярма 3. На каждом из шести стержней расположена секция сетевой обмотки 4 и секция обмотки управления 5. Секции 4 и 5 могут быть размещены концентрически, секция 5 - ближайшая к стержню. Каждые две секции 4 сетевой обмотки каждого стержня 2 соединены между собой параллельно (узлы A и X, B и Y, C и Z) и собраны в трехфазную схему (звезда с выведенной нейтралью O). Три секции обмотки управления 5, принадлежащие одному (левому) стержню 2 каждого магнитопровода соединены последовательно в первый открытый треугольник 6, три другие секции обмотки управления, принадлежащие другому (правому) стержню каждого магнитопровода, соединены последовательно во второй открытый треугольник 7. Эти два открытых треугольника соединены между собой параллельно и подключены к "плюсу" и "минусу" регулируемого источника постоянного напряжения подмагничивания 8 (управляемый выпрямитель-преобразователь). Для изменения во времени тока подмагничивания в соответствии с заданным алгоритмом регулирования реактивной мощности реактора имеется система регулирования 9. В схеме реактора может быть использован элемент 10, в состав которого входит резистор и разрядник, для шунтирования и защиты от перенапряжений источника 8.
На осциллограммах установившегося режима работы реактора показаны кривые линейных токов трех фаз 11, 12 и 13, токов 14 и 15 в двух секциях сетевой обмотки 4 соседних стержней 2, токов 16 и 17 в секциях обмотки управления на этих же стержнях и в открытых треугольниках, а также индукция 18 в одном стержне и индукция 19 в немагнитном промежутке между стержнем и обмоткой управления.
Управляемый подмагничиванием трехфазный реактор, выполненный в соответствии с формулой предлагаемого изобретения, работает следующим образом.
При подключении реактора к трехфазной сети (фазы A, B и C) и отсутствии тока подмагничивания возникает режим наименьшего рабочего тока, т.е. режим минимальной мощности реактора. При этом в каждом стержне реактора существует переменный магнитный поток, указанный на фиг. 1 сплошными стрелками. В секциях обмотки управления 5 магнитный поток наводит переменную ЭДС. На зажимах источника постоянного тока напряжение при этом будет равно нулю, т. к. сумма напряжений в двух открытых треугольниках из-за сдвига фаз в трехфазной сети всегда равна нулю: Ua1x1 + Ub1y1 + Uc1z1 = 0 и Ua2x2 + Ub2y2 + Uc2z2 = 0.
При большом токе подмагничивания, который создает источник постоянного тока, возникает режим максимальной мощности реактора, когда все стержни реактора насыщены, т.е. индукция в стержнях во все моменты времени в течение периода сети больше индукции насыщения Bs. Магнитный поток (его постоянная составляющая) показан на фиг. 1 пунктирными стрелками. В этом режиме дифференциальная индуктивность секций сетевых обмоток в течение всего периода одна и та же, она равна индуктивности обмоток, в которых сталь отсутствует (из-за ее полного насыщения). В режиме максимальной мощности сетевой ток реактора поэтому практически синусоидален. Переменная составляющая магнитного потока в этом режиме (так же, как и в режиме минимальной мощности, так же, как и во всех других режимах) наводит в секциях обмотки управления переменные ЭДС, сумма которых на зажимах открытых треугольников, т.е. на клеммах источника постоянного напряжения, всегда равна нулю. Это важно для нормальной работы источника 8.
Следует пояснить, что направление всех секций обмоток реактора (сетевой и управления) может быть одинаковым (все "левые" или все "правые") или различным, что не является принципиальным. В варианте на фиг. 1 на каждом однофазном стержне одна секция сетевой обмотки - "левая", другая - "правая", что изображается "волнами" разного направления и различно расположенными точками около "начала" секций обмоток (одна наверху, другая - внизу). Такое соединение обеспечивает встречное направление переменных магнитных потоков в соседних стержнях. Секции обмотки управления на соседних стержнях магнитопровода имеют одно и то же направление намотки. На фиг. 1 обе секции - "левые", что обозначено одинаковым направлением "волн" и одинаковым расположением точек около "начала" секций обмоток. При этом схема соединения обеспечивает согласное направление магнитных потоков, создаваемых током подмагничивания от регулируемого источника 8. Возможен и другой вариант сочетаний направлений намоток секций, когда переменные магнитные потоки направлены в соседних стержнях согласно, а постоянные магнитные потоки - встречно. По отношению к основным электромагнитным процессам эти два режима равнозначны, но в зависимости от применяемых мер по снижению добавочных потерь из-за паразитных магнитных потоков имеет преимущество либо первый, либо второй вариант.
Кроме рассмотренных предельных режимов - наименьшей и наибольшей мощности реактора, возможны и другие промежуточные режимы. В промежуточных режимах при меньших, чем предельный, токах подмагничивания каждый стержень находится в насыщенном состоянии только определенную часть периода, т.к. на переменный магнитный поток, создаваемый секциями сетевой обмотки, накладывается постоянный ("смещенный" от нулевой линии) магнитный поток, и при этом только при совпадении знаков магнитных потоков возникает насыщение стержня.
В качестве примера на фиг. 2 приведена иллюстрация этих процессов. На верхних графиках кривые 11, 12 и 13 соответствуют линейным токам, ниже даны кривые тока в двух секциях сетевой обмотки одного стержня 14 и 15 (в других фазах токи такие же, но смещены на 120 градусов). Еще ниже даны кривые токов в секциях обмотки управления этого стержня 16 и 17 (они такие же, как и в других стержнях, т.к. секции соединены последовательно). Как видно, в данном режиме линейные токи близки к синусоидальным, в то время как токи в секциях сетевой обмотки резко несинусоидальные. Это происходит потому, что все четные высшие гармоники в токе двух секций стержня замыкаются в контуре их параллельного соединения и не выходят наружу в ток сети.
В то же время токи гармоник, кратных трем, замыкаются в треугольниках секций обмоток управления (заметно, что в токе управления выражена 6-я гармоника). На нижней кривой 18 видно, что индукция в стержне около половины периода меньше индукции насыщения Bs, а в другой части периода - больше индукции насыщения. В эти отрезки времени насыщения стержня возникает магнитное поле в канале между стержнем и секцией обмотки управления (секции обмотки управления и сетевой обмотки размещены коаксиально), что подтверждает кривая индукции в этом канале 19.
Указанные обстоятельства, обуславливающие небольшие нелинейные искажения в линейных токах реактора, являются одним из самых главных преимуществ предлагаемого управляемого реактора по сравнению с прототипом. Оно достигнуто за счет введения новых связей между элементами известного устройства-прототипа - соединения секций обмотки управления в два параллельных открытых треугольника. Кроме этого, в предлагаемом реакторе упрощается конструкция за счет снижения числа стержней с обмотками: в прототипе кроме стержней с секциями сетевой обмотки имеется ярмо с обмоткой управления, что приводит к увеличению расхода проводниковой меди, электротехнической стали и электрической изоляции, а также к увеличению затрат в производстве реактора. Аналогичный эффект экономии получается за счет применения в предлагаемом реакторе одного регулируемого источника постоянного тока подмагничивания вместо трех в прототипе.
Кроме того, расположение в прототипе обмотки управления не на "главном" стержне, а на ярме магнитопровода, приводит к возникновению неблагоприятного поля рассеяния, создающего добавочные потери в элементах конструкции. Этого недостатка нет в предлагаемом реакторе.
Для того, чтобы в режиме номинальной мощности ток искажения (т.е. содержание в токе высших гармоник) был в допустимых пределах, отношение номинальной индуктивности Lн к индуктивности секции сетевой обмотки при полном насыщении стали стержня Lнасыщ. должно находиться в пределах
1,5 < Lн/Lнасыщ < 3, (1)
где Lн = Uн/ωIн,
Lнасыщ = 0,5μ0W2π(Dср-a/3)2/4h,
Uн и Iн- номинальные напряжение и ток реактора,
ω = 2πf - круговая частота сети, f - частота сети,
μ0 = 0,4π•10-6Гн/м - магнитная постоянная,
W, Dср, a и h - число витков, средний диаметр, радиальный размер и высота секции сетевой обмотки.
Дополнительные расчеты, которые при необходимости могут быть предоставлены экспертизе, показывают, что при отношении Lн/Lнасыщ. = 2 номинальный ток реактора теоретически является чисто синусоидальным, а при условии
1,5 < Lн/Lнасыщ < 3
в токе реактора содержатся высшие гармоники, однако при этом ток искажения составляет не более 5%. Величина тока искажения не более 5% диктуется основными техническими требованиями, предъявляемыми к реактору, и содержится обычно в нормативных документах (стандартах, технических условиях и др.). Если Lн/Lнасыщ < 1,5 или Lн/Lнасыщ > 3, то ток искажения получается более 5%.
Следует указать, что номинальные напряжение и ток могут быть выражены через размеры реактора и удельные нагрузки на основные активные материалы:
Figure 00000002

Iн = ΔSпр,
где Sст = πD 2 ст к3/4 - сечение стали стержня, Dст - диаметр стержня;
Kз - коэффициент заполнения сталью сечения стержня;
Sпр - сечение проводов сетевой обмотки;
Bm - максимальная индукция в стали при номинальном напряжении (обычно Bm = 1,6 - 1,9 Тл);
Δ - - плотность тока в проводниках сетевой обмотки (обычно для меди Δ ≈ 2,5 А/мм2).
Таким образом, условие (1) по существу является условием выполнения определенного соотношения размеров реактора.
В итоге предлагаемый реактор имеет преимущества в технико-экономических показателях по сравнению с прототипом.
Предлагаемый трехфазный реактор может быть изготовлен в одном баке или в виде трех однофазных реакторов.
Работоспособность предлагаемого управляемого подмагничиванием трехфазного реактора и его высокие технико-экономические показатели подтверждены моделированием и расчетами.
По сравнению с базовым устройством (вращающимся синхронным компенсатором, статическим компенсатором или тиристорно-реакторной группой), выполняющим те же функции, предлагаемый управляемый подмагничиванием реактор имеет ряд преимуществ, из которых одно из главных - меньшая в 1,5-2 раза стоимость.
Использованная литература
1. Авторское свидетельство СССР N 1803934 H 01 F 29/14, Бюллетень изобретений N 11, 1993 г.
2. Авторское свидетельство СССР N 1014050 H 01 F 29/14, Бюллетень изобретений N 15, 1983 г.

Claims (2)

1. Электрический трехфазный управляемый подмагничиванием реактор, содержащий три замкнутых однофазных стержневых магнитопровода, каждый из которых имеет два стержня, а также двухсекционную сетевую обмотку и двухсекционную обмотку управления, причем на каждом стержне расположены секция сетевой обмотки и секция обмотки управления, при этом секции сетевой обмотки, размещенные на каждом магнитопроводе, соединены параллельно и присоединены к трехфазной сети, а также регулируемый источник постоянного тока подмагничивания, отличающийся тем, что три секции обмотки управления на одних стержнях магнитопроводов соединены последовательно в первый открытый треугольник, а три секции обмотки управления других стержней магнитопроводов соединены последовательно во второй открытый треугольник, при этом два открытых треугольника соединены параллельно и подключены к регулируемому источнику постоянного тока подмагничивания.
2. Устройство по п.1, отличающееся тем, что отношение номинальной индуктивности реактора Lн к индуктивности секции сетевой обмотки при полном насыщении стержня Lнасыщ должно находиться в пределах
1,5 < Lн/Lнасыщ < 3,
где Lн= Uн/ω•Iн;
Lнасыщ= 0,5μoW2π(Dcp-a/3)2/4h;
Uн и Iн - номинальные напряжение и ток реактора;
ω = 2πf - круговая частота сети, f - частота сети;
μo= 0,4π×10-6Гн/м - магнитная постоянная,
W, Dcp, a и h - число витков, средний диаметр, радиальный размер и высота секции сетевой обмотки.
RU98100385/09A 1998-01-06 1998-01-06 Электрический управляемый подмагничиванием трехфазный реактор RU2132581C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98100385/09A RU2132581C1 (ru) 1998-01-06 1998-01-06 Электрический управляемый подмагничиванием трехфазный реактор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98100385/09A RU2132581C1 (ru) 1998-01-06 1998-01-06 Электрический управляемый подмагничиванием трехфазный реактор

Publications (1)

Publication Number Publication Date
RU2132581C1 true RU2132581C1 (ru) 1999-06-27

Family

ID=20201062

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98100385/09A RU2132581C1 (ru) 1998-01-06 1998-01-06 Электрический управляемый подмагничиванием трехфазный реактор

Country Status (1)

Country Link
RU (1) RU2132581C1 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2473999C1 (ru) * 2011-07-15 2013-01-27 "Сиадор Энтерпрайзис Лимитед" Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора
RU2486619C1 (ru) * 2012-02-07 2013-06-27 Александр Михайлович Брянцев Электрический трехфазный реактор с подмагничиванием
RU2592256C1 (ru) * 2015-05-27 2016-07-20 Илья Николаевич Джус Шунтирующий управляемый реактор
EP3168708A1 (de) 2015-11-10 2017-05-17 Siemens Aktiengesellschaft Stufenlos regelbare sättigungs-kompensationsdrosselspule
RU2658347C1 (ru) * 2017-10-03 2018-06-20 Илья Николаевич Джус Устройство для регулирования тока шунтирующего реактора
WO2019009869A1 (ru) * 2017-07-07 2019-01-10 Леонид Нисонович КОНТОРОВИЧ Управляемый электрический реактор
RU2700569C1 (ru) * 2019-03-26 2019-09-18 Илья Николаевич Джус Управляемый реактор с независимым подмагничиванием
RU2701149C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты)
RU2701147C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус Шунтирующий управляемый реактор
RU2701144C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус Управляемый шунтирующий реактор
RU2701150C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты)
RU2714492C1 (ru) * 2019-09-23 2020-02-18 Илья Николаевич Джус Техфазный управляемый реактор (варианты)
RU2757149C1 (ru) * 2020-12-08 2021-10-11 Илья Николаевич Джус Трехфазный управляемый реактор (варианты)
RU2757670C1 (ru) * 2020-12-08 2021-10-20 Илья Николаевич Джус Трехфазный управляемый шунтирующий реактор (варианты)
RU2778934C1 (ru) * 2022-01-10 2022-08-29 Илья Николаевич Джус Управляемый трехфазный реактор (варианты)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2473999C1 (ru) * 2011-07-15 2013-01-27 "Сиадор Энтерпрайзис Лимитед" Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора
RU2486619C1 (ru) * 2012-02-07 2013-06-27 Александр Михайлович Брянцев Электрический трехфазный реактор с подмагничиванием
RU2592256C1 (ru) * 2015-05-27 2016-07-20 Илья Николаевич Джус Шунтирующий управляемый реактор
EP3168708A1 (de) 2015-11-10 2017-05-17 Siemens Aktiengesellschaft Stufenlos regelbare sättigungs-kompensationsdrosselspule
RU2664387C2 (ru) * 2015-11-10 2018-08-17 Сименс Акциенгезелльшафт Бесступенчато регулируемая компенсационная дроссельная катушка насыщения
US10056886B2 (en) 2015-11-10 2018-08-21 Siemens Aktiengesellschaft Continuously variable saturable shunt reactor
WO2019009869A1 (ru) * 2017-07-07 2019-01-10 Леонид Нисонович КОНТОРОВИЧ Управляемый электрический реактор
RU2658347C1 (ru) * 2017-10-03 2018-06-20 Илья Николаевич Джус Устройство для регулирования тока шунтирующего реактора
RU2701150C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты)
RU2701144C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус Управляемый шунтирующий реактор
RU2701149C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты)
RU2701147C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус Шунтирующий управляемый реактор
RU2700569C1 (ru) * 2019-03-26 2019-09-18 Илья Николаевич Джус Управляемый реактор с независимым подмагничиванием
RU2714492C1 (ru) * 2019-09-23 2020-02-18 Илья Николаевич Джус Техфазный управляемый реактор (варианты)
RU2757149C1 (ru) * 2020-12-08 2021-10-11 Илья Николаевич Джус Трехфазный управляемый реактор (варианты)
RU2757670C1 (ru) * 2020-12-08 2021-10-20 Илья Николаевич Джус Трехфазный управляемый шунтирующий реактор (варианты)
RU2778934C1 (ru) * 2022-01-10 2022-08-29 Илья Николаевич Джус Управляемый трехфазный реактор (варианты)
RU2781912C1 (ru) * 2022-01-10 2022-10-20 Илья Николаевич Джус Линейный управляемый шунтирующий реактор (варианты)

Similar Documents

Publication Publication Date Title
RU2132581C1 (ru) Электрический управляемый подмагничиванием трехфазный реактор
Ewanchuk et al. Three-limb coupled inductor operation for paralleled multi-level three-phase voltage sourced inverters
US7453331B2 (en) Polyphase line filter
US6737837B1 (en) Device and a method for control of power flow in a transmission line
US5483111A (en) Method and apparatus for elimination of the exit-edge effect in high speed linear induction machines for maglev propulsion systems
US10014791B2 (en) Distribution transformer
KR100275221B1 (ko) 제어 파워 서플라이
Nakamura et al. Analysis of orthogonal-core type linear variable inductor and application to VAr compensator
JPH0782402B2 (ja) 移相器
Ichinokura et al. A new variable inductor for VAR compensation
US4513243A (en) Core form transformer for selective cancellation of subsynchronous resonance
RU2324250C1 (ru) Электрический реактор с подмагничиванием
CA2192174A1 (en) Circuitry for reduction of the magnetic field in the vicinity of multiphase power lines
Dolan et al. Harmonics and dynamic response of a virtual air gap variable reactor
KR101806293B1 (ko) 변압기의 코어의 자기 단방향성 플럭스 컴포넌트를 감소시키기 위한 장치
RU2065654C1 (ru) Управляемый реактор
Garvey et al. The role of integrated passive components in protecting motor windings
JPH0937468A (ja) 静止型無効電力補償装置
US1979699A (en) Balance coil
Muthyala et al. Analysis of single phase transformer excited by superposition of square and sine wave
Nakamura et al. Application of orthogonal-core transformer to series compensation for power system
Okanuma et al. A new reactor circuit to remove the 5th harmonic voltage of a three-phase circuit
Ichinokura et al. Development of a Variable Inductor for an Electric Power System
SU1109845A1 (ru) Трехфазный источник реактивной мощности
RU1421213C (ru) Компенсатор реактивной мощности

Legal Events

Date Code Title Description
QZ4A Changes in the licence of a patent

Effective date: 20040818

PC4A Invention patent assignment

Effective date: 20070306

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20121206

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20121206

Effective date: 20130805

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20121206

Effective date: 20150121

PC41 Official registration of the transfer of exclusive right

Effective date: 20170314