RU2131120C1 - Устройство для определения параметров диэлектрических материалов - Google Patents

Устройство для определения параметров диэлектрических материалов Download PDF

Info

Publication number
RU2131120C1
RU2131120C1 RU96106684/09A RU96106684A RU2131120C1 RU 2131120 C1 RU2131120 C1 RU 2131120C1 RU 96106684/09 A RU96106684/09 A RU 96106684/09A RU 96106684 A RU96106684 A RU 96106684A RU 2131120 C1 RU2131120 C1 RU 2131120C1
Authority
RU
Russia
Prior art keywords
elements
pipe segment
electromagnetic energy
section
excitation
Prior art date
Application number
RU96106684/09A
Other languages
English (en)
Other versions
RU96106684A (ru
Inventor
А.П. Мартынов
Е.Л. Маслов
Д.Н. Покусин
И.Ю. Субботин
А.Д. Титков
Original Assignee
Товарищество с ограниченной ответственностью Фирма "Феррат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью Фирма "Феррат" filed Critical Товарищество с ограниченной ответственностью Фирма "Феррат"
Priority to RU96106684/09A priority Critical patent/RU2131120C1/ru
Application granted granted Critical
Publication of RU2131120C1 publication Critical patent/RU2131120C1/ru
Publication of RU96106684A publication Critical patent/RU96106684A/ru

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Устройство для определения параметров диэлектрических материалов содержит измерительную секцию в виде отрезка трубы, снабженного элементами возбуждения и съема электромагнитной энергии, расположенными на боковой стенке отрезка трубы, вдоль оси, параллельной продольной оси отрезка трубы, и соединенными соответственно с источником электромагнитной энергии и измерительным блоком, выполненным в виде измерителя затухания электромагнитной энергии и подключенным к вычислительному блоку, при этом на концах отрезка трубы установлены короткозамыкающие элементы, а расстояние между элементами возбуждения и съема электромагнитной энергии рассчитывается по приведенному математическому соотношению и зависит от диэлектрической проницаемости исследуемого материала, конфигурации и размеров отрезка трубы и амплитуды электромагнитной волны на входе и выходе отрезка трубы. Технический результат заключается в создании устройства, имеющего простую конструкцию, позволяющего измерять с высокой точностью параметры различных, в том числе жидких, газообразных, сыпучих материалов. 7 з.п.ф-лы, 3 ил.

Description

Изобретение относится к технике измерений с помощью электромагнитных волн и может использоваться для определения качественных и количественных характеристик различных диэлектрических материалов, в том числе жидких, газообразных, сыпучих с различной степенью дисперсности частиц, в широком диапазоне значений измеряемых параметров, например, влажность, температура, объемные и весовые соотношения смесей, сплошность, расход, однородность и др. , причем как в потоке, так и в заданном ограниченном количестве пробы исследуемого материала. Такими материалами могут быть нефть, технические жидкости, природный газ, криогенные среды, строительные сыпучие и жидкие материалы, химические и пищевые сыпучие продукты, зерновые продукты, текстильные волокна, искусственные нити, шерсть и т д.
В настоящее время нет прибора, позволяющего достоверно и надежно измерять в широком диапазоне их значений как качественные, так и количественные параметры самых разнообразных жидких, газообразных и сыпучих диэлектрических материалов.
Известно устройство для измерения влажности коконов шелкопряда (авторское свидетельство СССР N 1755141, кл 601 N 22/04, 90 г.), содержащее генератор электромагнитных колебаний, соединенный с излучающей антенной, установленной на входе камеры для пробы коконов, механизм вибрации, связанный с камерой, приемную антенну, установленную на выходе камеры и соединенную через измеритель затухания электромагнитных колебаний с вычислительным блоком. Влажность пробы пропорциональна величине затухания электромагнитных волн, прошедших через камеру с пробой. Вибрация камеры с пробой перед началом измерений с помощью механизма вибрации позволяет повысить точность измерений за счет снижения неоднородности пробы коконов по объемной плотности путем уплотнения.
Недостатками известного устройства является невозможность измерения им параметров материалов в потоке в широком диапазоне размеров частиц материала. Кроме того, устройство не позволяет измерять такой параметр, как весовые соотношения веществ, входящих в состав исследуемого материала, с большой неоднородностью по измеряемому объему.
Известно также устройство, выбранное в качестве прототипа, которое может быть использовано для измерения диэлектрических параметров сыпучих, жидких и газообразных сред (Патент США N 5103181, кл 324-637, 92 г.).
Устройство содержит измерительную секцию в виде электрически изолированного отрезка трубы, встраиваемого в трубопровод, по которому движется исследуемый материал. Измерительная секция снабжена окнами для возбуждения в ней электромагнитных колебаний и съема сигнала, соответствующего резонансной частоте данной системы.
Однако данное устройство не позволяет осуществлять измерения параметров материала интегрально в исследуемом объеме и измерения параметров материалов с большими потерями. Поскольку точность измерений в таком устройстве зависит от добротности измерительного резонатора, которая в случае очень высоких потерь, например появления водяной пробки в потоке исследуемого материала, в частности нефти, газа, будет низкой, что не позволит измерить с высокой точностью резонансную частоту такого резонатора. Устройство также не является универсальным. Поскольку определение характеристик исследуемого материала осуществляется на основе измерений одного и того же физического параметра, а именно частоты, данное устройство имеет ограниченную информативность, что неприемлемо для измерительных систем повышенной надежности, например, в системах охлаждения ядерного реактора.
Заявляемое изобретение направлено на решение задачи, заключающейся в создании устройства для определения параметров диэлектрических материалов, имеющего простую конструкцию, позволяющего измерять с высокой точностью параметры самых различных диэлектрических материалов: жидких, газообразных, сыпучих с разной степенью дисперсионности, определять их качественный и количественный состав, причем как в потоке исследуемого материала, так и в пробе заданного объема.
Поставленная задача решается в устройстве для определения параметров диэлектрических материалов, содержащем источник электромагнитной энергии, измерительный блок, подключенный к вычислительному блоку, и отрезок трубы, снабженный элементами возбуждения и съема электромагнитной энергии, расположенными на боковой стенке и соединенными соответственно с источником электромагнитной энергии и измерительным блоком, при этом на концах отрезка трубы установлены короткозамыкающие элементы, в котором согласно изобретению элементы возбуждения и съема электромагнитной энергии расположены вдоль оси, параллельной продольной оси отрезка трубы, а измерительный блок выполнен в виде измерителя затухания электромагнитной волны, при этом расстояние между элементами возбуждения и съема электромагнитной энергии соответствует выражению:
A = A0e-h''L
где L - расстояние между элементами возбуждения и съема электромагнитной энергии;
h'' - мнимая часть коэффициента h, зависящего от диэлектрической проницаемости ε исследуемого материала, размеров отрезка трубы и рабочей длины волны λ, причем для прямоугольного сечения отрезка трубы
Figure 00000002

где λ - длина волны в вакууме; a - ширина отрезка трубы,
а в случае круглого сечения отрезка трубы
Figure 00000003

A0 - амплитуда электромагнитной волны на входе волновода;
A - амплитуда волны на выходе волновода.
Отрезок трубы имеет круглое сечение, диаметр которого равен диаметру трубопровода с транспортируемым материалом.
Короткозамыкающиеся элементы выполнены в виде параллельных пластин, расположены параллельно продольной оси отрезка трубы.
Короткозамыкающиеся элементы выполнены в виде проволочных решеток, расположенных перпендикулярно продольной оси отрезка трубы, причем размеры ячеек проволочных решеток соответствуют размерам частиц исследуемого материала.
Отрезок трубы имеет круглое, прямоугольное или квадратное сечение, размеры которого и расстояние между элементами возбуждения и съема электромагнитной энергии соответствуют заданному объему пробы исследуемого материала, при этом один из короткозамыкающих элементов выполнен в виде пластины, перекрывающей поперечное сечение отрезка трубы, установленной перпендикулярно его продольной оси.
Другой короткозамыкающий элемент выполнен в виде параллельных пластин, расположенных параллельно продольной оси отрезка трубы.
Устройство снабжено измерителем фазы прошедшей электромагнитной волны, включенным между элементами возбуждения и съема электромагнитной энергии.
Элементы возбуждения и съема электромагнитной энергии снабжены поляризаторами электромагнитной волны.
Выполнение измерительной секции в виде отрезка трубы с элементами возбуждения и съема электромагнитной энергии, расположенными вдоль оси отрезка трубы на расстоянии друг от друга в соответствии с приведенным выражением, а также выполнение измерительного блока в виде измерителя затухания прошедшей через исследуемый материал электромагнитной энергии позволяет осуществлять с высокой точностью интегральные измерения в выбранном объеме веществ в широком интервале значений измеряемых параметров и типов веществ.
Выполнение отрезка трубы круглого сечения и короткозамыкающих элементов в виде параллельных пластин или проволочных решеток, соответствующим образом расположенных относительно оси отрезка трубы, позволяет встраивать измерительную секцию в трубопровод с транспортируемым материалом, что позволяет проводить измерения в потоке.
Выполнение одного из короткозамыкающих элементов в виде пластины, перекрывающей сечение отрезка трубы, и соответствующий выбор сечения отрезка трубы и расстояния между элементами возбуждения и съема электромагнитной энергии позволяют измерять параметры материала в пробе заданного объема, там, где это требуется, например в мешке сыпучего продукта.
Наличие в устройстве измерителя фазы позволяет получать в этой же измерительной системе дополнительный информационный параметр, что позволяет измерять параметры трехкомпонентных сред с высокой точностью, также повысить точность измерений двухкомпонентных сред за счет устранения неоднозначности фазового метода амплитудным методом, в случаях, когда динамика измерений исследуемого параметра очень большая, и при измерениях в системах с малыми отклонениями диэлектрических параметров, например в криогенных системах охлаждения.
Наличие поляризаторов электромагнитной волны обеспечивает высокую точность измерений за счет уменьшения потерь в неоднородностях трубопроводов и имеющих сложную конфигурацию, например змеевики, спирали, множественные изгибы, так как работа осуществляется на волнах с круговой поляризацией.
Изобретение поясняется чертежами. На фиг. 1 приведена конструкция устройства для определения параметров диэлектрических материалов, на фиг. 2 - конструкция измерительной секции, на фиг.3 - другой вариант конструкции измерительной секции.
Устройство для определения параметров диэлектрических материалов (фиг. 1) содержит источник 1 электромагнитной энергии, измерительный блок в виде измерителя затухания 2, подключенный к вычислительному блоку 3, измерительную секцию в виде отрезка трубы 4, снабженного элементами 5,6 возбуждения и съема электромагнитной энергии соответственно, на концах отрезка трубы 4 установлены короткозамыкающие элементы 7, 8, которые могут быть выполнены в виде набора параллельных пластин 9, расположенных параллельно продольной оси отрезка трубы 4 (фиг. 3), либо в виде проволочных решеток 10, расположенных перпендикулярно продольной оси отрезка трубы 4 (фиг. 2). Размеры ячеек проволочной решетки соответствуют размерам частиц исследуемого материала. Отрезок трубы 4 может иметь различную форму поперечного сечения. Для осуществления измерений в потоке, т.е. непосредственно в трубопроводе с транспортируемым материалом, предпочтительно иметь круглое сечение, диаметр которого соответствует диаметру трубопровода 11 (фиг. 2). При измерении в заданном объеме пробы для изготовления измерительной секции предпочтительно прямоугольное сечение (см. фиг. 3). В этом случае один из короткозамкнутых элементов 7 (8) выполнен в виде пластины 12, перекрывающей поперечное сечение отрезка трубы 4 (фиг. 3).
Для возбуждения круговой поляризации элементы возбуждения 5, 6 снабжены поляризаторами электромагнитной волны (не показаны), которые могут быть выполнены одними из известных способов. Устройство также снабжено измерителем фазы 13 прошедшей электромагнитной волны.
Устройство работает следующим образом: электромагнитная энергия от источника 1 подается через элемент 5 возбуждения электромагнитной энергии в измерительную секцию в виде отрезка трубы 4, прошедшая через него электромагнитная волна выводится через элемент 6 съема электромагнитной энергии и с помощью измерителя затухания 2 или измерителя фазы 13 определяется величина затухания электромагнитной волны и (или, когда это необходимо) ее фаза. По измеренным параметрам в вычислительном блоке 3 вычисляются необходимые параметры, как качественные, так и количественные, параметры исследуемого вещества по соответствующим вычислительным программам, разработанным авторами.
Выбор необходимой величины L производится на основании таких данных как диапазон измеряемых величин ε, заданной точности измерений, а также в случае измерений в потоке - диаметра трубопровода, т. е. величины рабочей частоты электромагнитных волн, либо, в случае измерений в заданном объеме пробы, - объемом измерительной камеры.

Claims (8)

1. Устройство для определения параметров диэлектрических материалов, содержащее источник электромагнитной энергии, измерительный блок, подключенный к вычислительному блоку, и измерительную секцию в виде отрезка трубы, снабженного элементами возбуждения и съема электромагнитной энергии, расположенными на боковой стенке отрезка трубы и соединенными соответственно с источником электромагнитной энергии и измерительным блоком, при этом на концах отрезка трубы установлены короткозамыкающие элементы, отличающееся тем, что элементы возбуждения и съема электромагнитной энергии расположены вдоль оси, параллельной продольной оси отрезка трубы, а измерительный блок выполнен в виде измерителя затухания электромагнитной энергии, при этом расстояние между элементами возбуждения и съема электромагнитной энергии соответствует выражению
A = A0e-h''L,
где L - расстояние между элементами возбуждения и съема электромагнитной энергии;
h'' - мнимая часть коэффициента h, зависящая от диэлектрической проницаемости ε исследуемого материала, размеров отрезка трубы и рабочей длины волны, причем для прямоугольного сечения отрезка трубы:
Figure 00000004

где λ - длина волны в вакууме,
а - ширина отрезка трубы,
а в случае круглого сечения отрезка трубы
Figure 00000005

A0 - амплитуда электромагнитной волны на входе отрезка трубы;
A - амплитуда электромагнитной волны на выходе отрезка трубы.
2. Устройство по п.1, отличающееся тем, что отрезок трубы имеет круглое сечение, диаметр которого равен диаметру трубопровода с транспортируемым материалом.
3. Устройство по п.2, отличающееся тем, что короткозамыкающие элементы выполнены в виде параллельных пластин, расположенных параллельно продольной оси отрезка трубы.
4. Устройство по п.2, отличающееся тем, что короткозамыкающие элементы выполнены в виде проволочных решеток, расположенных перпендикулярно продольной оси отрезка трубы, причем размеры ячеек проволочных решеток соответствуют размерам частиц исследуемого материала.
5. Устройство по п.1, отличающееся тем, что отрезок трубы имеет круглое, прямоугольное или квадратное сечение, при этом один из короткозамыкающих элементов выполнен в виде пластины, перекрывающей поперечное сечение отрезка трубы, установленной перпендикулярно его продольной оси.
6. Устройство по п. 5, отличающееся тем, что другой короткозамыкающий элемент выполнен в виде параллельных пластин, расположенных параллельно продольной оси отрезка трубы.
7. Устройство по п.1, отличающееся тем, что устройство снабжено измерителем фазы прошедшей электромагнитной волны, включенным между элементами возбуждения и съема электромагнитной энергии.
8. Устройство по п.2, отличающееся тем, что элементы возбуждения и съема электромагнитной энергии снабжены поляризаторами электромагнитной волны.
RU96106684/09A 1996-04-12 1996-04-12 Устройство для определения параметров диэлектрических материалов RU2131120C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96106684/09A RU2131120C1 (ru) 1996-04-12 1996-04-12 Устройство для определения параметров диэлектрических материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96106684/09A RU2131120C1 (ru) 1996-04-12 1996-04-12 Устройство для определения параметров диэлектрических материалов

Publications (2)

Publication Number Publication Date
RU2131120C1 true RU2131120C1 (ru) 1999-05-27
RU96106684A RU96106684A (ru) 2000-02-10

Family

ID=20179004

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96106684/09A RU2131120C1 (ru) 1996-04-12 1996-04-12 Устройство для определения параметров диэлектрических материалов

Country Status (1)

Country Link
RU (1) RU2131120C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU169540U1 (ru) * 2015-03-17 2017-03-22 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный педагогический университет им. М. Акмуллы" Поточный свч-влагомер

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Викторов В.А. и др. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.134 - 135, 143, 164 - 175. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU169540U1 (ru) * 2015-03-17 2017-03-22 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный педагогический университет им. М. Акмуллы" Поточный свч-влагомер

Similar Documents

Publication Publication Date Title
RU2115110C1 (ru) Способ и измерительное устройство для измерения in situ электромагнитных свойств различных обрабатываемых материалов с использованием характеристики частоты отсечки и анализа
EP0437532B1 (en) Composition monitor and monitoring process using impedance measurements
JP6196664B2 (ja) マイクロ波キャビティセンサ
DK1451562T3 (en) Compact flow meter.
US6826964B2 (en) Method for measuring properties of flowing fluids, and a metering device and a sensor used for performing this method
US7469188B2 (en) Method and flow meter for determining the flow rate of a multiphase fluid
EP1510810A1 (en) A microwave fluid sensor and a method for using same
EP1144985B1 (en) Apparatus and method for determining dielectric properties of an electrically conductive fluid
RU2131120C1 (ru) Устройство для определения параметров диэлектрических материалов
RU2451928C1 (ru) Свч-способ определения влажности жидких углеводородов и топлив
US7223608B2 (en) Resonance-enhanced dielectric sensing of chemical and biological species
De La Bernardie et al. Low (10–800 MHz) and high (40 GHz) frequency probes applied to petroleum multiphase flow characterization
RU2358261C1 (ru) Свч-способ определения влажности органических веществ
RU2559840C1 (ru) Свч-способ определения осажденной влаги в жидких углеводородах
RU2569180C1 (ru) Способ поточного измерения доли воды в смеси с углеводородной жидкостью и устройство для его реализации
RU2287806C2 (ru) Свч-способ определения объемного процентного содержания влагосодержащих присадок в жидких углеводородах и топливах
RU2202804C2 (ru) Способ измерения относительной диэлектрической проницаемости жидких сред на свч
SU1709202A1 (ru) Датчик влажности почвогрунтов и сыпучих материалов
RU2753459C1 (ru) Способ и устройство для определения состава водонефтяной смеси
SU1291855A1 (ru) Волноводна чейка дл измерени влажности жидких материалов
RU2119658C1 (ru) Способ измерения объемного содержания компонента многокомпонентной однородной смеси
RU2306572C1 (ru) Свч способ бесконтактного определения диэлектрической проницаемости жидких сред и контроля процесса осаждения диэлектрических частиц
RU2131600C1 (ru) Способ определения влагосодержания нефтепродукта в диэлектрическом трубопроводе
Liu et al. Microwave-cavity-based Online Moisture Sensing for Concrete Fabrication.
SU1742688A1 (ru) Радиоволновый датчик влажности

Legal Events

Date Code Title Description
NF4A Reinstatement of patent
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060413