RU2123731C1 - Способ осуществления реакции термоядерного синтеза - Google Patents

Способ осуществления реакции термоядерного синтеза Download PDF

Info

Publication number
RU2123731C1
RU2123731C1 RU96121897A RU96121897A RU2123731C1 RU 2123731 C1 RU2123731 C1 RU 2123731C1 RU 96121897 A RU96121897 A RU 96121897A RU 96121897 A RU96121897 A RU 96121897A RU 2123731 C1 RU2123731 C1 RU 2123731C1
Authority
RU
Russia
Prior art keywords
shell
thermonuclear
magnetic field
compression
density
Prior art date
Application number
RU96121897A
Other languages
English (en)
Other versions
RU96121897A (ru
Inventor
А.Е. Дубинов
И.В. Макаров
В.Д. Селемир
Original Assignee
Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики
Министерство Российской Федерации по атомной энергии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики, Министерство Российской Федерации по атомной энергии filed Critical Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики
Priority to RU96121897A priority Critical patent/RU2123731C1/ru
Application granted granted Critical
Publication of RU2123731C1 publication Critical patent/RU2123731C1/ru
Publication of RU96121897A publication Critical patent/RU96121897A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к области ядерной физики и технике высоких плотностей энергии и может быть использовано для осуществления реакции термоядерного синтеза, генерации термоядерных нейтронов, α-частиц и γ-квантов. Способ осуществления реакции термоядерного синтеза заключается в обжатии сферической проводящей оболочки с термоядерным горючим в виде газа давлением импульсного магнитного поля. Перед обжатием оболочке дополнительно придают вращение и подают ее в зону обжатия магнитным полем так, чтобы ось вращения оболочки была параллельна вектору напряженности магнитного поля. При осуществлении способа повышается эффективность термоядерной реакции и выход нейтронов за счет увеличения плотности и температуры термоядерной плазмы при увеличении отбора энергии от импульсного магнитного поля, симметрии обжатия оболочки, стабилизации магнитогидродинамических неустойчивостей типа Рэлея-Тейлора и генерации внутри оболочки сверхсильного магнитного поля с индукцией ≈ 100 МГс. 5 ил.

Description

Изобретение относится к области ядерной физики и технике высоких плотностей энергии и может быть использовано для осуществления реакции термоядерного синтеза, генерации термоядерных нейтронов, α- частиц и γ- квантов.
Известен способ осуществления реакции термоядерного синтеза (Дюдерштадт Дж. , Мозес Г., Инерциальный термоядерный синтез. М.: Энергоатомиздат, 1984 г. ), заключающийся в том, что с помощью лазерного излучения или интенсивных пучков заряженных частиц проводят быстрое сжатие микроскопических капель термоядерного топлива до плотности, в несколько раз превышающей плотность твердого тела, и температуры порядка 108 K, требуемых для эффективного термоядерного горения. При таких условиях горение термоядерной реакции протекает так быстро, что выделение большого количества энергии синтеза происходит до того, как топливо успевает разлететься. К недостаткам данного способа можно отнести следующее: 1 - малую эффективность термоядерной реакции; 2 - небольшой выход нейтронов. Это обусловлено неоднородностью облучения поверхности топливной мишени и развитием магнитогидродинамических неустойчивостей типа Рэлея-Тейлора.
Наиболее близким к предлагаемому решению является способ осуществления реакции термоядерного синтеза (Мохов В.Н., Чернышев В.К. и др. "О возможности решения проблемы управляемого термоядерного синтеза на основе магнитогазодинамической кумуляции энергии", Докл. АН СССР, том 247, N1, 1979 г., с. 83-86), заключающийся в том, что сферическую проводящую оболочку с термоядерным горючим обжимают давлением импульсного магнитного поля. Источником импульсного магнитного поля может быть взрывомагнитный генератор (ВМГ), в котором происходит процесс преобразования химической энергии взрывчатого вещества (ВВ) в электромагнитную. Под действием давления продуктов взрыва заряда происходит магнитная кумуляция энергии. Оболочку обжимают до таких значений плотности и температуры, при которых осуществляется зажигание термоядерной реакции с достаточно высоким энерговыделением. Недостатками такого способа являются 1 - малая эффективность термоядерной реакции; 2 - небольшой выход нейтронов - это обусловлено тем, что не достигается высокая степень симметрии сжатия мишени из-за неоднородности давления магнитного поля на поверхности оболочки (отклонения в давлении на поверхности оболочки не должны превышать 0,5%) и неоднородности самой оболочки, а также подверженность оболочки (лайнера) магнитогидродинамическим неустойчивостям типа Рэлея-Тейлора.
Решаемой задачей при создании данного изобретения является объединение двух альтернативных концепций - инерциального термоядерного синтеза и магнитного удержания термоядерной плазмы.
Техническим результатом предлагаемого решения является повышение эффективности термоядерной реакции и выхода нейтронов за счет увеличения плотности и температуры термоядерной плазмы путем увеличения отбора энергии от импульсного магнитного поля, симметрии обжатия оболочки, стабилизации магнитогидродинамических неустойчивостей типа Рэлея-Тейлора и генерации внутри оболочки сверхсильного магнитного поля В≈100 МГс.
Этот результат достигается тем, что по сравнению с известным способом осуществления реакции термоядерного синтеза, заключающегося в том, что сферическую проводящую оболочку с термоядерным горючим в виде газа обжимают давлением импульсного магнитного поля, новым является то, что перед обжатием оболочке дополнительно придают вращение и подают ее в зону обжатия магнитным полем так, чтобы ось вращения оболочки была параллельна вектору напряженности магнитного поля.
Способ осуществления реакции термоядерного синтеза основан на сжатии вращающейся проводящей оболочки сверхсильным импульсным магнитным полем и на использовании специфических физических эффектов, возникающих в процессе сжатия.
Вращение позволяет сохранить сферичность оболочки при ее схлопывании под действием аксиального сверхсильного магнитного поля, например взрывомагнитного генератора МК-1 (Павловский А.И., Людаев Р.З. Магнитная кумуляция. В кн. Вопросы современной экспериментальной и теоретической физики. Под редакцией акад. Александрова А.П., Л.: Наука, 1984 г.). Использование сферической геометрии оболочки в процессах кумуляции увеличивает плотность кинетической энергии и повышает степень сжатия по сравнению с цилиндрической. Вращение приводит к более эффективному отбору энергии от взрывомагнитного генератора и тем самым к увеличению скорости схлопывания, т.к. вращающуюся оболочку труднее сжать. Возникающие в оболочке при ее вращении центробежные и кориолисовы силы снижают опасность развития неустойчивостей типа Рэлея-Тейлора. Кроме того, возникающий в результате сжатия вращающейся оболочки αω--динамо-эффект (Паркер Е.Н. Космические магнитные поля, М.: Мир, 1982), заключающийся в том, что сильные магнитные поля азимутальной или полоидальной конфигурации генерируются при помощи гиротропной турбулентности и дифференциального вращения из начального магнитного поля, приводит к генерации сверхсильных магнитных полей с амплитудой, еще большей, чем в самом взрывомагнитном генераторе, которые в свою очередь приводят к удержанию и дополнительному разогреву термоядерной плазмы в центре сжатой оболочки (Басов Н.Г., Лебо И.Г., Розанов В.Б. Физика термоядерного синтеза, М.: Знание, 1988 г.).
Сжатие вращающейся оболочки с термоядерным горючим сильным импульсным магнитным полем можно условно разделить на несколько стадий:
диффузия начального магнитного поля в проводящую вращающуюся оболочку,
схлопывание вращающейся оболочки под действием быстронарастающего магнитного поля с образованием дифференциального вращения,
сжатие и нагрев термоядерного горючего сходящейся сферической ударной волной с образованием в ее центре высокой плотности и температуры,
самонагрев термоядерной плазмы,
возникновение αω-динамо-эффекта, удержание и дополнительный разогрев термоядерной плазмы сильными магнитными полями.
Рассмотрим каждую из стадий более подробно.
Сначала происходит диффузия начального магнитного поля в полость вращающейся оболочки, заполненной термоядерным горючим.
Дифференциальное вращение в оболочке и в газе возникает в результате действия на них кориолисовых сил и соответствует закону сохранения момента количества движения. Дифференциальное вращение изгибает силовые линии начального магнитного поля, вытягивая их в азимутальном направлении, а омическая диссипация перезамыкает их, образуя азимутальное магнитное поле.
Вследствиe сферической кумуляции внутренние слои оболочки приобретают большую радиальную скорость схлопывания (по расчетам в рамках системы одномерных МГД - уравнений со сферической геометрией оболочки -ν >107 см/с, где ν - скорость внутренней поверхности оболочки). Схождение внутренних слоев оболочки к центру происходит с образованием ударной волны, поэтому при ударе большая часть поступательной кинетической энергии оболочки переходит в упругую энергию сжатия и нагрев веществa. В центре вещество нагревается до температуры от 2 до 5 кэВ и сжимается до плотностей ρ >50 г/см3.
При ρR > 0,5 г/см2 (R - внутренний радиус оболочки, ρ - плотность плазмы) будет происходить самонагрев топлива α- частицами до температуры 20 кэВ.
Сильный нагрев и сжатие центральной части топлива приводит к перемешиванию горячего вещества с холодным и образованию турбулентных движений. При наличии вращения, градиента плотности и градиента температуры турбулентность становится гиротропной. Гиротропная турбулентность, дифференциальное вращение и начальное крупномасштабное магнитное поле азимутальной или полоидальной конфигурации приводят к возникновению в конвективной зоне αω--динамо-эффекта, который приводит к генерации сверхсильных магнитных полей полоидальной и азимутальной конфигурации. В плазме теплопроводность (перенос энергии) обусловлена движением электронов, поэтому при генерации полей свыше 100 МГс (оценка по тем же расчетам в рамках системы одномерных МГД-уравнений) плазма становится "замагниченной", т.е. когда частота соударений электронов будет меньше их циклотронной частоты. Замагниченность плазмы приводит к уменьшению теплового потока в направлении, перпендикулярном магнитным силовым линиям. Это приведет к уменьшению радиального теплового потока в оболочку. За счет удержания электронной компоненты термоядерной плазмы сильными магнитными полями происходит дополнительный ее разогрев до температуры порядка 100 кэВ. При такой температуре термоядерная реакция протекает очень эффективно и с почти полным выгоранием термоядерного горючего.
На фиг.1 изображена схема для осуществления заявляемого способа реакции термоядерного синтеза; на фиг. 2-5 - различные стадии сжатия вращающейся оболочки.
На фиг. 1 изображено: 1 - взрывомагнитный генератор сверхсильного магнитного поля, 2 - оболочка-соленоид, 3 - заряд взрывчатого вещества (ВВ), 4 - диэлектрическая трубка, 5 - гироскоп с бесконтактным подвесом, 6 - вращающаяся проводящая оболочка, 6' и 6'' - положение оболочки в различные моменты времени.
На фиг. 2-5 изображены различные стадии сжатия вращающейся сферической оболочки:
2 - диффузия начального магнитного поля в проводящую вращающуюся сферическую оболочку;
3 - схлопывание вращающейся оболочки под действием нарастающего магнитного поля;
4 - генерация азимутального магнитного поля дифференциальным вращением;
5 - генерация полоидального магнитного поля гиротропной турбулентностью.
Способ осуществляется следующим образом. Сферическую проводящую оболочку 6 с термоядерным горючим обжимают давлением импульсного магнитного поля. Источником импульсного магнитного поля служит взрывомагнитный генератор 1, в котором в момент, соответствующий максимуму начального поля, производится подрыв взрывчатого вещества 3. Образовавшаяся сходящаяся цилиндрическая ударная волна ускоряет соленоид-оболочку 2 к центру, и она сжимает начальный магнитный поток, а тот в свою очередь сжимает вращающуюся оболочку 6, заполненную термоядерным горючим.
Перед обжатием оболочки 6 ей дополнительно придают вращение в гироскопе 5 с бесконтактными подвесами (Мартыненко Ю. Г. Движение твердого тела в электрических и магнитных полях. М. : Наука, 1988 г.). Полость гироскопа вакуумируется. После раскрутки оболочка вращается по инерции. Далее быстро убираются нижние подвесы и оболочку подают в зону обжатия магнитным полем. Этой зоной является область сверхсильного магнитного поля взрывомагнитного генератора, окруженная вакуумированной диэлектрической трубкой 4. Для устранения момента, пропорционального [Ω×H] (Ω - угловая скорость оболочки, H - напряженность магнитного поля в генераторе), нарушающего устойчивое вращение тела, необходимо, чтобы динамическая ось вращения оболочки совпадала с направлением магнитного поля в генераторе. Для симметричного обжатия вращающейся оболочки необходимо, чтобы область однородного магнитного поля в генераторе была много больше геометрических размеров оболочки.
Таким образом, по сравнению с прототипом, где температура плазмы 4 - 5 кэВ, а плотность 20 г/см3, при реализации заявляемого способа возможно увеличение температуры плазмы до 100 кэВ и плотности плазмы ρ >50 г/см3. При этом ожидается существенное увеличение эффективности термоядерной реакции и выход нейтронов. Увеличениe плотности и температуры термоядерной плазмы происходит за счет более эффективного отбора энергии от импульсного магнитного поля, симметрии обжатия оболочки, стабилизации магнитогидродинамических неустойчивостей типа Рэлея-Тейлора и генерации внутри оболочки сверхсильного магнитного поля В≈100 МГс.

Claims (1)

  1. Способ осуществления реакции термоядерного синтеза, заключающийся в том, что сферическую проводящую оболочку с термоядерным горючим в виде газа обжимают давлением импульсного магнитного поля, отличающийся тем, что перед обжатием оболочке дополнительно придают вращение и подают ее в зону обжатия магнитным полем так, чтобы ось вращения оболочки была параллельна вектору напряженности магнитного поля.
RU96121897A 1996-11-13 1996-11-13 Способ осуществления реакции термоядерного синтеза RU2123731C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96121897A RU2123731C1 (ru) 1996-11-13 1996-11-13 Способ осуществления реакции термоядерного синтеза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96121897A RU2123731C1 (ru) 1996-11-13 1996-11-13 Способ осуществления реакции термоядерного синтеза

Publications (2)

Publication Number Publication Date
RU2123731C1 true RU2123731C1 (ru) 1998-12-20
RU96121897A RU96121897A (ru) 1999-01-20

Family

ID=20187256

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96121897A RU2123731C1 (ru) 1996-11-13 1996-11-13 Способ осуществления реакции термоядерного синтеза

Country Status (1)

Country Link
RU (1) RU2123731C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Мохов В.Н. и др. О возможности решения проблемы управляемого термоядерного синтеза на основе магнитогазодинамической кумуляции энергии. ДАН СССР.- М.: Наука, 1979, т.247, N 1, с. 83-85. *

Similar Documents

Publication Publication Date Title
US4826646A (en) Method and apparatus for controlling charged particles
JP4131512B2 (ja) 磁場反転配位における制御された融合および直接的なエネルギー変換
Blandford Accretion disc electrodynamics—a model for double radio sources
JP4097093B2 (ja) 磁場反転配位におけるプラズマの磁気的閉じ込めおよび静電気的閉じ込め
US4618470A (en) Magnetic confinement nuclear energy generator
Krall The polywell™: A spherically convergent ion focus concept
US20130058446A1 (en) Continuous fusion due to energy concentration through focusing of converging fuel particle beams
US20110170647A1 (en) Method and apparatus for controlling charged particles
US20240015876A1 (en) System Of Converging Plasma Pistons
US3501376A (en) Method and apparatus for producing nuclear fusion
US20190295733A1 (en) Plasma Compression Fusion Device
JP2023520020A (ja) 無線周波数及び中性ビームパワーを使用する高エネルギプラズマ発生器
US11948697B2 (en) Orbital confinement fusion device
RU2123731C1 (ru) Способ осуществления реакции термоядерного синтеза
US20160180971A1 (en) Magnetic Torsion Accelerator
Winterberg Coriolis force-assisted inertial confinement fusion
KR100843283B1 (ko) 플라즈마 발전 시스템
Kislev et al. Transport of Light Ion Beams in a high pressure ICF reactor
Luest Terrestrial and extraterrestrial plasmas
REESE et al. Superheavy Magnetic Monopoles and Main Sequence Stars