RU2121060C1 - Способ разработки нефтяной залежи - Google Patents

Способ разработки нефтяной залежи Download PDF

Info

Publication number
RU2121060C1
RU2121060C1 RU96106818A RU96106818A RU2121060C1 RU 2121060 C1 RU2121060 C1 RU 2121060C1 RU 96106818 A RU96106818 A RU 96106818A RU 96106818 A RU96106818 A RU 96106818A RU 2121060 C1 RU2121060 C1 RU 2121060C1
Authority
RU
Russia
Prior art keywords
injection
water
wells
cycle
oil
Prior art date
Application number
RU96106818A
Other languages
English (en)
Other versions
RU96106818A (ru
Inventor
Ю.А. Поддубный
Э.Л. Лейбин
Х.Х. Гумерский
А.Г. Дябин
К.Л. Матвеев
А.Я. Соркин
В.А. Кан
Ф.Ф. Галиев
Р.Г. Исмагилов
В.Е. Ступоченко
И.Р. Сулейманов
Original Assignee
Поддубный Юрий Анатольевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Поддубный Юрий Анатольевич filed Critical Поддубный Юрий Анатольевич
Priority to RU96106818A priority Critical patent/RU2121060C1/ru
Publication of RU96106818A publication Critical patent/RU96106818A/ru
Application granted granted Critical
Publication of RU2121060C1 publication Critical patent/RU2121060C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Способ разработки нефтяной залежи относится к нефтяной промышленности и может найти применение при разработке неоднородной нефтяной залежи с неоднородными коллекторами. При разработке нефтяной залежи определяют емкостно-фильтрационные свойства коллекторов продуктивного горизонта и устанавливают продолжительность полуциклов циклического режима закачки воды через нагнетательные скважины. В начале первого полуцикла в нагнетательные скважины в высокопроницаемые интервалы разреза продуктивного горизонта закачивают реагенты, повышающие гидродинамическое сопротивление пластов и сохраняющие эти свойства в течение времени первого полуцикла, а затем закачивают воду в течение всего первого цикла. В течение полуцикла закачивают воду в нагнетательные скважины через весь интервал разреза продуктивного горизонта. Закачку реагентов, повышающих гидродинамическое сопротивление пластов, возможно осуществлять их введением в поток закачиваемой в нагнетательную скважину воды при сохранении режима закачки. Техническим результатом является увеличение нефтеотдачи залежи. 3 табл.

Description

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи с расчлененными проницаемостно-неоднородными коллекторами.
Известен способ разработки нефтяной залежи, включающий закачку рабочего агента через нагнетательные скважины и отбор нефти через добывающие скважины [1].
Известный способ не позволяет разработать нефтяную залежь с неоднородными коллекторами с высокой нефтеотдачей вследствие быстрого обводнения добываемой продукции из-за опережающего прорыва воды по высокопроницаемым прослоям.
Наиболее близким к изобретению по технической сущности является способ разработки нефтяной залежи, включающий отбор нефти через добывающие скважины и закачку воды в циклическом режиме через нагнетательные скважины [2].
За счет циклического режима работы нагнетательных скважин удается повысить полноту извлечения запасов нефти, однако в залежи остаются значительные невыработанные запасы, за счет доизвлечения которых может быть увеличен коэффициент нефтеизвлечения.
Целью изобретения является увеличение нефтеотдачи залежи.
Поставленная цель достигается тем, что в способе разработки нефтяной залежи, включающем отбор нефти через добывающие скважины и закачку воды в циклическом режиме через нагнетательные скважины, согласно изобретению определяют параметры пластов продуктивного горизонта и устанавливают продолжительность полуциклов циклического режима закачки воды через нагнетательные скважины, в начале первого полуцикла в нагнетательные скважины в высокопроницаемые интервалы разреза продуктивного горизонта закачивают реагенты, повышающие гидродинамическое сопротивление пластов и сохраняющие эти свойства в течение времени первого полуцикла, а затем закачивают воду в течение всего первого полуцикла, в течение второго полуцикла закачивают воду в нагнетательные скважины через весь интервал разреза продуктивного горизонта. Закачку реагентов, повышающих гидродинамическое сопротивление пластов, осуществляют их введением в поток закачиваемой в нагнетательную скважину воды при сохранении режима закачки.
Существенными признаками изобретения являются:
1. Отбор нефти через добывающие скважины;
2. Закачка воды в циклическом режиме через нагнетательные скважины;
3. Определение параметров пластов продуктивного горизонта и установление продолжительности полуциклов циклического режима закачки воды через нагнетательные скважины;
4. Закачка реагентов, повышающих гидродинамическое сопротивление пластов и сохраняющих эти свойства в течение времени первого полуцикла;
5. Закачка реагентов в начале первого полуцикла в высокопроницаемые интервалы разреза продуктивного горизонта;
6. Закачка воды в течение всего первого полуцикла;
7. Закачка воды в течение второго полуцикла в нагнетательные скважины через весь интервал разреза продуктивного горизонта;
8. Закачка реагентов при их введении в поток закачиваемой в нагнетательную скважину воды при сохранении режима закачки.
Признаки 1, 2 являются общими с прототипом, признаки 3-7 являются существенными признаками изобретения, признак 8 является частным существенным признаком изобретения.
При разработке многопластовой нефтяной залежи со значительной неоднородностью емкостно-фильтрационных свойств рабочий агент поступает в основном в высокопроницаемые пласты и добыча нефти осуществляется главным образом из высокопроницаемых пластов. При этом в низкопроницаемых пластах остаются значительные невыработанные запасы нефти. При закачке в высокопроницаемые пласты реагентов, повышающих гидродинамическое сопротивление пластов, происходит снижение их проницаемости и, в результате, выравнивание проницаемостей пластов, слагающих разрез продуктивного горизонта. В этих условиях рабочий агент поступает не только в бывший высокопроницаемый пласт, но и в менее проницаемые пласты разреза, за счет чего их разработка активируется. В предлагаемом изобретении осуществляют выбор реагентов таким образом, чтобы они не только способствовали снижению проницаемости высокопроницаемых пластов, но и сохраняли это свойство в течение необходимого периода времени. Этот период времени рассчитывают исходя из свойств пластов и флюидов: соотношения фильтрационных сопротивлений нагнетательной скважины и добывающих скважин, получающих влияние от закачки, нефтенасыщенности пласта и вязкости нефти и воды ([3], с. 16).
За время, рассчитанное в соответствии с отмеченной работой, обеспечивается проявление капиллярных эффектов и эффекта изменения направления фильтрационных потоков в пласте ([4], с. 11).
В соответствии с временем первого полуцикла подбирают реагенты, создающие изоляцию высокопродуктивного пласта в течение этого времени. После естественного разрушения изолирующего материала в пласте наступает второй полуцикл. Его время определяют как время до закачки новой порции реагентов. В течение первого полуцикла высокопроницаемый интервал изолирован (полностью или частично), и рабочий агент поступает в основном в низкопроницаемый пласт. Цикличность воздействия на пласты способствует проявлению капиллярных эффектов, а также изменению градиентов давления и изменению направления фильтрационных потоков в пласте, что и обуславливает извлечение дополнительного количества нефти.
Введение в рабочий агент арегантов и изоляция высокопроницаемых интервалов без остановки нагнетательной скважины способствует сохранению режима закачки и более активному поддержанию пластового давления, а также более равномерной работе скважин.
Последний фактор особенно актуален при разработке месторождений северных районов Западной Сибири. В качестве реагентов выбирают различные составы, в том числе композиции, состоящие из полиакриламида, бихромата калия и лигносульфоната (КССБ). При этом доля каждого компонента, их соотношение в композиции определяется необходимой продолжительностью сохранения изолирующих свойств. Композиции, состоящие из отмеченных компонентов, способны сохранять свои изолирующие свойства в широком диапазоне значений: от 3 до 4-5 месяцев и более. Оптимальный объем закачки реагентов составляет порядка 2 м3 на 1 м эффективной толщины пласта.
Пример 1. Способ опробован на одном из месторождений Западной Сибири на участке, включающем пять рядов скважин, в том числе центральный ряд, состоящий из 10 нагнетательных скважин, и по два ряда добывающих скважин с каждой стороны от разрезающего. Расстояния между скважинами в рядах 300 м, между рядами добывающих скважин тоже 300 м. Между рядом нагнетательных скважин и смежными рядами добывающих скважин 500 м. Ряды скважин ориентированы с севера на юг. Размеры участка примерно 3х1,6 км.
Эксплуатационный объект составляет пласты АВ13 + АВ21. Верхний горизонт представлен чередованием маломощных прослоев низкопроницаемых коллекторов и глин.
Горизонт АВ21 в пределах большей части площади блока представлен коллекторами монолитного строения, сочетающимися с прослоями тонкослоистых коллекторов и глин.
Проницаемость монолитов, как правило, выше и составляет 200-300 и иногда 400 мкм2•10-3, а тонкочередующихся коллекторов - от единиц до нескольких десятков мкм2•103.
На участке пробурено 46 скважин, в том числе 36 добывающих и 10 нагнетательных. Давление на линии нагнетания 21-22 МПа. Давление в зоне отбора 16,0-16,5 МПа.
Обводненность продукции перед проведением промыслово-экспериментальных работ 88,8%. Месячные отборы нефти, воды и жидкости 4394 т, 36038 т и 40432 т соответственно. Коэффициент текущей компенсации 1,06.
Циклическое заводнение по обычной схеме осуществлялось в течение трех месяцев. Нестационарность обеспечивалась путем периодической остановки (на 30 сут) определенной группы нагнетательных скважин при работе в этот период другой группы нагнетательных скважин. А именно, в одном режиме работали скважины N 1, 3, 5, 6, 9. Остальные нагнетательные скважины 2, 4, 6, 8, 10 работали в другом режиме. Так, в первый и третий месяцы периода проведения нестационарного воздействия по известному способу были остановлены скважины N 1, 3, 5, 6, 9. Закачка в это время осуществлялась в скважины 2, 4, 6, 8 и 10. Во второй месяц имела место обратная картина: вода закачивалась в скважины 1, 3, 5, 7, 9, а не работали скважины 2, 4, 6, 8, 10.
Группы попеременно работающих нагнетательных скважин, их приемистость и объемы месячной закачки по известной и предлагаемой технологиям даны в табл. 1.
В результате осуществления циклической закачки обводненность продукции снизилась на 1,2% и составила 87,7% в квартальном исчислении. Дополнительная добыча нефти составила 1143 т.
По данным промыслово-геофизических исследований скважин, пробуренных на нижележащие объекты через 8 лет после ввода в разработку рассматриваемого участка, были выявлены опережающие заводняемые закачиваемой водой высокопроницаемые интервалы продуктивного разреза и интервалы, слабо принимающие воду. По геофизическим материалам оценили емкостно-фильтрационные характеристики пластов и наметили интервалы для закачки реагентов, повышающих гидродинамическое сопротивление коллекторов. В качестве таковых приняты высокопроницаемые коллекторы монолитного строения, занимающие нижнюю часть разреза пласта АВ21.
Используя емкостно-фильтрационные и вязкостные характеристики залежи на участке проведения работ по нестационарному воздействию по формуле, регламентированной Инструкцией по совершенствованию технологии циклического заводнения и изменения направления фильтрационных потоков ([3], с. 16), произвели расчет продолжительности полуциклов работы и остановки нагнетательных скважин, равно как и продолжительности их работы в условиях отсутствия изолированности высокопроницаемых прослоев и при изоляции последних. Расчетная продолжительность полуциклов составила 25-30 сут. Соответственно для регулирования гидродинамического сопротивления коллекторов применен реагент, сохраняющий свои изолирующие свойства в течение этого времени.
Состав реагента, %: полиакриламид РДА 1020 0,3-0,4; бихромат калия 0,2; лигносульфонат (КССБ) 0,6.
Объемы закачки реагента приняты в соответствии с нормативами, приведенными в Руководстве по применению системной технологии воздействия на нефтяные пласты месторождений Главтюменьнефтегаза (РД 39-014035-254-883). Норматив для использованных в работе реагентов составил 2 м3 реагента на 1 м эффективной толщины пласта.
В табл. 2 приведены характеристики толщин интервалов регулирования фильтрационных свойств коллекторов в нагнетательных скважинах, расход реагента и объемы продавочной жидкости.
Нестационарность по рекомендуемому способу обеспечивалась для высокопроницаемых опережающе обводняемых интервалов периодическим предотвращением поступления в них закачиваемой воды путем закачки в нагнетательные скважины химреагентов с продолжительностью сохранения изоляционных свойств в течение 30 сут. При этом при нагнетании в условиях изолированности высокопроницаемых интервалов в слабопринимающие воду пласты поступали большие объемы воды, чем при закачке в условиях неизолированности высокопроницаемых пластов, что обуславливало нестационарность воздействия в слабопроницаемых пластах. Циклическое заводнение по известному способу осуществлялось в течение трех месяцев. Работы по рекомендуемой технологии начаты через два месяца после окончания циклического заводнения по известному способу. Воздействие осуществлялось по следующей схеме.
В первые 30 сут закачка воды осуществлялась в нагнетательные скважины второй группы (NN 2, 4, 6, 8, 10) через весь интервал перфорации. В этот период в скважины первой группы (NN 1, 3, 5, 7, 9) в опережающе заводняемые пласты проводили закачку реагентов, сохраняющих свои изоляционные свойства в течение 30 сут. После чего в эти скважины в условиях изоляции высокопроницаемых прослоев закачивали воду.
Во вторые 30 сут закачку воды в полный интервал перфорации производили в скважины первой группы (NN 1, 3, 5, 7, 9), а реагент закачивали в опережающе заводняемые интервалы скважин второй группы (NN 2, 4, 6, 8, 10). После закачки реагента в эти скважины в условиях изоляции высокопроницаемых прослоев закачивали воду.
В третий месяц проведения работ реагенты, повышающие гидродинамическое сопротивление призабойной зоны пласта, закачивали в скважины первой группы (NN 1, 3, 5, 7, 9), а закачку в полный интервал перфорации осуществляли в скважины второй группы.
Закачиваемые реагенты изолировали поступление воды в высоко проницаемые интервалы. А отмечавшаяся приемистость скважин, в которые была проведена их закачка, связана с поступлением воды в слабо проницаемые интервалы разреза, что устанавливали проведением дебитометрии скважин.
Для соблюдения условий равенства объемов нагнетания по известному и рекомендуемому способам на величину приемистости, имевшей место при закачке в условиях изоляции высокопроницаемых интервалов, снижены объемы закачки в скважины, работающие в условиях открытости, т.е. полного интервала перфорации.
При разработке участка по предлагаемой технологии обводненность добываемой продукции составила 86,1%, т.е. снизилась на 1,5% относительно обводненности добываемой нефти по известной технологии.
Все сведения о добыче нефти, жидкости, обводненности продукции при отмеченных выше условиях приведены в табл. 3.
Из рассмотренных материалов табл. 3 следует:
- при проведении работ по известной технологии циклического воздействия за счет снижения обводненности продукции эффект в виде дополнительной добычи нефти составил 1142 т;
- при проведении работ по рекомендуемому способу, т.е. при обеспечении циклического воздействия не периодическим прекращением закачки воды в группы нагнетательных скважин, а периодическим прекращением поступления закачиваемой воды в высокопроницаемые интервалы разреза и периодическим увеличением ее поступления в интервалы, слабо принимающие воду - эффект в виде дополнительной добычи нефти по сравнению с известной технологией циклического воздействия составил 11,3% (1577 т).
Общий прирост добычи, обеспеченный рекомендуемой технологией относительно уровня, имевшего место при стационарном заводнении 2720 т (21,4%).
Разница в добыче нефти по рекомендуемой и известной технологиям циклического воздействия 1577 т (11,3%).
Пример 2. Реализация способа осуществляется так же, как и в примере 1, с той лишь разницей, что нагнетательные скважины не останавливают для закачки гелеобразующих реагентов, а они вводятся в поток нагнетаемой воды. При этом объем закачки, состоящей из объемов реагентов и воды, соответствовал объемам нагнетания, установленным технологическим режимом по рассмотренной группе нагнетательных скважин. Работы по такой схеме осуществлялись также в течение трех месяцев.
При этом добыча жидкости и нефти осталась на уровне, полученном в предыдущем примере (табл. 3, графа 5).
Источники информации
1. Муравьев И.М. и др. Разработка и эксплуатация нефтяных и газовых месторождений. - М.: Недра, 1970, с. 109.
2. Сургучев М. Л. Вторичные и третичные методы увеличения нефтеотдачи пластов. - М.: Недра, 1985, с. 143-149 (прототип).
3. Инструкция по совершенствованию технологии циклического заводнения и изменения направления фильтрационных потоков. РД 39-0147035-232-88, Москва, Бугульма, 1988.
4. Цынкова О. Э., Мясникова Н.А., Баишев Б.Т. Гидродинамические методы увеличения нефтеотдачи. - М.: Недра, 1993, с. 111.

Claims (2)

1. Способ разработки нефтяной залежи, включающий отбор нефти через добывающие скважины и закачку воды в циклическом режиме через нагнетательные скважины, отличающийся тем, что определяют параметры пластов продуктивного горизонта и устанавливают продолжительность полуциклов циклического режима закачки воды через нагнетательные скважины, в начале первого полуцикла в нагнетательные скважины в высокопроницаемые интервалы разреза продуктивного горизонта закачивают реагенты, повышающие гидродинамическое сопротивление пластов и сохраняющие эти свойства в течение времени первого полуцикла, а затем закачивают воду в течение всего первого полуцикла, в течение второго полуцикла закачивают воду в нагнетательные скважины через весь интервал разреза продуктивного горизонта.
2. Способ по п.1, отличающийся тем, что закачку реагентов, повышающих гидродинамическое сопротивление пластов, осуществляют их введением в поток закачиваемой в нагнетательную скважину воды при сохранении режима закачки.
RU96106818A 1996-04-08 1996-04-08 Способ разработки нефтяной залежи RU2121060C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96106818A RU2121060C1 (ru) 1996-04-08 1996-04-08 Способ разработки нефтяной залежи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96106818A RU2121060C1 (ru) 1996-04-08 1996-04-08 Способ разработки нефтяной залежи

Publications (2)

Publication Number Publication Date
RU96106818A RU96106818A (ru) 1998-07-20
RU2121060C1 true RU2121060C1 (ru) 1998-10-27

Family

ID=20179075

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96106818A RU2121060C1 (ru) 1996-04-08 1996-04-08 Способ разработки нефтяной залежи

Country Status (1)

Country Link
RU (1) RU2121060C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540718C1 (ru) * 2014-03-21 2015-02-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяного месторождения
RU2597595C1 (ru) * 2015-10-29 2016-09-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи
RU2716759C1 (ru) * 2019-07-02 2020-03-16 Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") Способ нестационарной разработки низкопроницаемых коллекторов
RU2816723C1 (ru) * 2023-11-07 2024-04-03 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ повышения нефтеотдачи карбонатного коллектора башкирского яруса

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сургучев М.Л. Вторичные и третичные методы увеличения нефтеотдачи пластов. -М.: Недра, 1985, с. 143-149. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540718C1 (ru) * 2014-03-21 2015-02-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяного месторождения
RU2597595C1 (ru) * 2015-10-29 2016-09-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи
RU2716759C1 (ru) * 2019-07-02 2020-03-16 Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") Способ нестационарной разработки низкопроницаемых коллекторов
RU2817834C1 (ru) * 2023-07-28 2024-04-22 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ увеличения нефтеизвлечения на участках нестационарного заводнения
RU2819856C1 (ru) * 2023-10-11 2024-05-28 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки нефтяных месторождений
RU2816723C1 (ru) * 2023-11-07 2024-04-03 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ повышения нефтеотдачи карбонатного коллектора башкирского яруса

Similar Documents

Publication Publication Date Title
EP3337870B1 (en) Supplementing the immiscible water injection cycle with nutrients to improve oil release in oil-containing rock formations
RU2513787C1 (ru) Способ разработки нефтяной залежи на основе системно-адресного воздействия
RU2121060C1 (ru) Способ разработки нефтяной залежи
RU2594402C1 (ru) Способ последовательного заводнения слоистого коллектора
Bryant et al. Microbial-enhanced waterflooding field pilots
Hill et al. Design of the HCl preflush in sandstone acidizing
Holm Design, Performance, and Evaluation of the Uniflood Micellar-Polymer Process—Bell Creek Field
RU2087686C1 (ru) Способ разработки нефтяной залежи
US4207946A (en) Tertiary recovery process
US4034810A (en) Oil recovery
RU2197604C2 (ru) Способ разработки обводненной нефтяной залежи на поздней стадии
RU2132939C1 (ru) Способ разработки многопластовой нефтяной залежи
RU2191255C1 (ru) Способ разработки нефтяной залежи
RU2091569C1 (ru) Способ разработки неоднородной нефтяной залежи
RU2189438C1 (ru) Способ разработки нефтяного месторождения
Raiders et al. Selective plugging and oil displacement in crossflow core systems by microrganisms
RU2065938C1 (ru) Способ разработки нефтяной залежи
RU2777004C1 (ru) Способ интенсификации притоков углеводородов из глиносодержащих сложнопостроенных нефтематеринских пород
RU2060365C1 (ru) Способ разработки обводненной нефтяной залежи в пласте монолитного строения
RU2122630C1 (ru) Способ разработки нефтяной залежи на поздней стадии эксплуатации
RU2108451C1 (ru) Способ разработки нефтяной залежи
RU2729667C1 (ru) Способ регулирования профиля приемистости нагнетательной скважины
RU2053351C1 (ru) Способ разработки нефтяной залежи
Layton How to get additional oil from a watered-out flood
RU2753229C1 (ru) Способ разработки многопластовой нефтяной залежи

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070409