RU2116623C1 - Гидродинамический гироскоп - Google Patents

Гидродинамический гироскоп Download PDF

Info

Publication number
RU2116623C1
RU2116623C1 RU95120281A RU95120281A RU2116623C1 RU 2116623 C1 RU2116623 C1 RU 2116623C1 RU 95120281 A RU95120281 A RU 95120281A RU 95120281 A RU95120281 A RU 95120281A RU 2116623 C1 RU2116623 C1 RU 2116623C1
Authority
RU
Russia
Prior art keywords
float
rotor
spherical cavity
cavity
cups
Prior art date
Application number
RU95120281A
Other languages
English (en)
Other versions
RU95120281A (ru
Inventor
Ю.М. Неудахин
Г.М. Лошневский
В.Д. Зайцев
В.С. Седов
Т.П. Барычева
В.Г. Самарин
Л.А. Маслова
В.Н. Белобрагин
Original Assignee
Государственное научно-производственное предприятие "Сплав"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научно-производственное предприятие "Сплав" filed Critical Государственное научно-производственное предприятие "Сплав"
Priority to RU95120281A priority Critical patent/RU2116623C1/ru
Publication of RU95120281A publication Critical patent/RU95120281A/ru
Application granted granted Critical
Publication of RU2116623C1 publication Critical patent/RU2116623C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

Гироскоп предназначен для использования в качестве датчика углового отклонения систем слежения и управления. Ротор вращается относительно корпуса. Сферическая полость ротора частично заполнена жидкостью. Поплавок собран из 2-х полусфер и помещен в полость ротора. Поплавок снабжен кольцевой вставкой, установленной симметрично относительно его центра. Ротор выполнен из двух жестко соединенных чашек. Центры сфер чашек смещены от центра ротора. Чашки снабжены вкладышами с образованием цилиндрических полостей, симметричных оси подвеса. Сферическая полость сообщена с цилиндрическими полостями посредством выполненных во вкладышах сквозных каналов. Такая конструкция гироскопа обеспечивает повышение точности в условиях осевых и боковых перегрузок. 3 ил.

Description

Изобретение относится к гироскопическим приборам, а именно, к гироскопическим гироскопам и может найти применение в качестве датчика углового отклонения систем слежения и управления.
Подобные гироскопы обычно содержат корпус, вращающийся ротор со сферической полостью, частично заполненной жидкостью, размещенный в полости твердый сферический поплавок.
Основным требованием, предъявляемым к такому гироскопу является обеспечение точности его работы в условиях осевых и боковых перегрузок при изменении температуры окружающей среды в диапазоне от 50 до -50oC.
Известен гидродинамический гироскоп (см. К.П. Андрейченко "Динамика поплавковых гироскопов и акселерометров", М.: "Машиностроение", 1987). Этот гироскоп обладает повышенной точностью, стойкостью к перегрузкам, ударам и вибрации благодаря тому, что при поступательных и угловых переносных движениях основания инерционная силовая нагрузка со стороны поплавкового чувствительного элемента практически полностью воспринимается и гасится поддерживающим слоем жидкости.
Недостатком указанного гироскопа является наличие уводящих моментов, являющихся следствием несферичности полости ротора и поплавка, возникающих, например, при изготовлении вследствие технологических факторов.
Уводящие моменты вызывают ложное отклонение оси вращения поплавка. Например, при действии на гироскоп измеряемого входного воздействия ωвх поплавок отклонится не только на угол α в плоскости, перпендикулярной вектору измеряемого входного воздействия, который в данном случае является полезной информацией, но и на угол β в плоскости вектора измеряемого входного воздействия, который вносит погрешность измерения, приводя к возникновению в гидродинамическом гироскопе перекрестной связи. Коэффициент перекрестной связи Kпр= β/α. .
Наличие перекрестной связи значительно снижает коэффициент передачи и постоянную времени гироскопа, а также вносит погрешность при определении положения измеряемого входного воздействия относительно опорной системы координат объекта, что снижает точностные характеристики гироскопа и, следовательно, точностные характеристики системы слежения или управления.
Другим недостатком известного гидродинамического гироскопа является нарушение условия равенства нулю разности массы поплавка и массы вытесненной им жидкости, т.е. условия нулевой плавучести, необходимого для обеспечения точности гироскопа при воздействии на него перегрузок в рабочем диапазоне температур. При этом отношение (Mпвж)/Мп х 100% может достигать значения до ± (25-30)%, где Мп - масса поплавка; Мвж - масса вытесненной поплавком жидкости.
Таким образом задачей данного технического решения является разработка гидродинамического гироскопа, обеспечивающего высокую точность в условиях осевых и боковых перегрузок.
Общими признаками с предлагаемым авторами гироскопом являются: корпус, ротор со сферической полостью, частично заполненной жидкостью, вращающийся от внешнего элекродвигателя, помещенный в сферическую полость поплавок.
Оптимальной конструкцией гидродинамического гироскопа, удовлетворяющей требованиям по точности, явилась бы конструкция с компенсацией перекрестной связи, стабилизацией нулевой плавучести поплавка и оптимальным зазором между поплавком и поверхностью сферической полости.
Наиболее близким по сути и достигаемому техническому эффекту является гидродинамический гироскоп (см. К.П.Андрейченко "Динамика поплавковых гироскопов и акселерометров", М.: "Машиностроение", 1987), принятый авторами за прототип. Гироскоп включает корпус, ротор со сферической полостью, частично заполненной жидкостью, вращающийся от внешнего электродвигателя, помещенный в сферическую полость поплавок.
При вращении ротора поплавок увлекается во вращательное движение, всплывает на ось вращения поддерживающего слоя жидкости и центрируется в радиальном направлении относительно сферической полости.
Вследствие поворота корпуса гироскопа с угловой скоростью ωвх вокруг любой оси, перпендикулярной оси собственного вращения ротора, ось вращения поплавка остается от оси вращения сферической полости на некоторый угол θ , который характеризует величину входной угловой скорости.
Таким образом, задачей данного технического решения (прототипа) являлась разработка гироскопа высокой точности, перегрузочной способности, ударной и вибрационной стойкости.
Однако, поставленная задача до конца не была решена из-за наличия большого коэффициента перекрестной связи Кпс и невозможности обеспечения нулевой плавучести поплавка, связанным с технологическими погрешностями изготовления и температурным воздействием.
Уводящие моменты, от которых зависит Кпс, возникают в результате отклонения формы поплавка и сферической полости ротора от правильной сферы.
Для сферической полости отклонения заключаются в различии радиусов сферических поверхностей в пределах поля допуска на изготовление, биение сферических поверхностей деталей, образующих сферическую полость относительно оси вращения полости.
Для поплавка это отклонение выражается в изменении радиуса сферы в различных точках поверхности из-за технологических погрешностей при изготовлении. Кроме того, так как для обеспечения требований нулевой плавучести поплавок, как правило, изготавливают полым, состоящим из двух полусфер, полусферы при изменении температуры ведут себя как самостоятельные тела и каждая из них деформируется по своему, дополнительно искажая форму поплавка.
Изменение температуры и ускоренное движение основания вызывают изменение радиуса свободной поверхности жидкости Rсп (фиг. 1), что свою очередь нарушает условие Δm = Mп-Mвж= 0 . И это приводит к ошибке в измерении угла рассогласования между осями вращения поплавка и сферической полости ротора при одинаковой скорости углового перемещения корпуса гироскопа, т.е. к снижению точности.
Для повышения точности гидродинамического гироскопа необходимо увеличивать коэффициент передачи. Это возможно за счет снижения коэффициента сил вязкого трения, который уменьшается с увеличением зазора δ между поплавком и сферической полостью и снижения динамической вязкости жидкости. Однако увеличение зазора и снижение динамической вязкости жидкости в условиях воздействия на гироскоп боковых перегрузок может привести к возникновению незатухающих радиальных колебаний поплавка и, как следствие, к потере им устойчивости.
Анализ устойчивости движения поплавка показал, что затухание колебаний можно характеризовать величиной
Figure 00000002

Однако при значениях температуры окружающей среды ±50oC этого условия оказывается недостаточно и, в результате, на величину зазора δ накладывается дополнительное ограничение и его величина определяется из выражения:
Figure 00000003

где
ν - кинематическая вязкость жидкости.
Если величину кинематической вязкости ν задать в сантистоксах, то δ имеет размерность сантиметры.
Общими признаками прототипа с предлагаемым авторами гидродинамическим гироскопом является наличие корпуса, ротора со сферической полостью, частично заполненной жидкостью и вращающегося от внешнего электродвигателя, помещенный в сферическую полость поплавок.
В отличие от прототипа, в предлагаемом авторами гидродинамическом гироскопе поплавок, собранный из двух полусфер, дополнительно снабжен кольцевой вставкой, установленной с плотным контактом с сопрягаемыми поверхностями поплавка, симметрично относительно его центра, ротор выполнен из двух жестко соединенных между собой через регулируемые элементы чашек, центры сфер которых смещены из центра ротора на величину L≤0,004 x Rk, чашки снабжены вкладышами с образованием цилиндрических полостей, выполненных симметрично оси подвеса, торцевые поверхности вкладышей со стороны сферической полости изготовлены по сфере с радиусом, равным радиусу сферической полости, а сферическая полость сообщена с цилиндрическими полостями посредством выполненных во вкладышах сквозных переходных каналов, при этом высота цилиндрической полости Hп определяется по формуле:
Figure 00000004

а радиальный зазор δ между поверхностью сферической полости ротора и поплавком определяется из условия:
Figure 00000005

где
Rz, Rп, Rk -радиусы основания цилиндрической полости, поплавка и сферической полости соответственно;
ν - кинематическая вязкость жидкости.
Именно это позволяет сделать вывод о наличии причинно - следственной связи между совокупностью существенных признаков предложенного технического решения и достигаемым техническим результатом.
Указанные признаки, отличительные от прототипа, и на которые распространяется испрашиваемый объем правовой охраны, во всех случаях достаточны.
Задачей предполагаемого изобретения является повышение точности гироскопа в условиях осевых и боковых перегрузок при изменении температуры окружающей среды в диапазоне от -50oC до +50oC
Новое конструктивное выполнение гироскопа позволяет увеличить его точность за счет уменьшения коэффициента перекрестной связи, стабилизации нулевой плавучести поплавка, оптимального выбора зазора между поплавком и поверхностью сферической полости ротора.
Сущность изобретения состоит в том, гидродинамический гироскоп, содержащий корпус, ротор со сферической полостью, частично заполненной жидкостью, вращающийся от внешнего электродвигателя относительно корпуса, помещенный в сферическую полость поплавок, собранный из двух полусфер, в отличие от прототипа и согласно изобретению дополнительно снабжен кольцевой вставкой, установленной с плотным контактом с сопрягаемыми поверхностями поплавка симметрично относительно его центра, ротор со сферической полостью выполнен из двух жестко соединенных между собой через регулируемые элементы чашек, центры сфер которых смещены от центра ротора на величину L ≤0,004 x Rk, чашки снабжены вкладышами с образованием цилиндрических полостей, выполненных симметрично оси подвеса, торцевые поверхности вкладышей со стороны сферической полости изготовлены по сфере с радиусом, равным радиусу сферической полости, а сферическая полость сообщена с цилиндрическими полостями посредством выполненных во вкладышах сквозных переходных каналов, при этом высота цилиндрических полостей Hп определяется по формуле:
Figure 00000006

а радиальный зазор δ между поверхностью сферической полости ротора и поплавком определяется из условия
Figure 00000007

где
Rz, Rп, Rk -радиусы основания цилиндрической полости, поплавка и сферической полости соответственно;
ν - кинематическая вязкость жидкости.
На фиг. 1 изображен поперечный разрез гидродинамического гироскопа; на фиг. 2 - зависимость величины компенсируемого коэффициента перекрестной связи от отношения L/Rk; на фиг. 3 - кривые изменения плавучести поплавка Δm от отношения радиуса основания цилиндрических полостей к радиусу сферической полости.
Гироскоп содержит корпус 1, вращающийся с угловой скоростью Ω ротор со сферической полостью 2, состоящий из двух жестко соединенных между собой чашек 3, 4. Чашки снабжены вкладышами 7, 8, образующими цилиндрические полости 5,6. Сферическая полость 2 и цилиндрические полости 5,6 сообщаются между собой посредством сквозных переходных каналов 11,12,13,14, выполненных во вкладышах 7, 8 и частично заполнены жидкостью 9. В полости 2 размещен сферический поплавок 10 собранный из двух полусфер 16, 17 и дополнительно снабженный кольцевой вставкой 18, установленной с плотным контактом с сопрягаемыми поверхностями поплавка (полусферами 16, 17). Между чашками 3, 4 установлен регулируемый элемент 15, с помощью которого можно при сборке ротора обеспечивать необходимое смещение центров чашек от центра ротора на величину L. Регулируемый элемент 15 может быть, например, выполнен в виде кольца, высота которого подбирается при сборке ротора в соответствии с требуемой величиной L.
Гироскоп работает следующим образом. При вращении камеры 2 с угловой скоростью Ω поплавок 10 за счет гидродинамического давления со стороны жидкости 9, увлекаемой во вращение внутренней поверхностью чашек 3 и 4, размещается в центре полости 2 и за счет сил вязкого трения приводится во вращение с угловой скоростью Ω . Оси вращения поплавка 10 ОХп и полости 2 ОХk совпадают. При угловом перемещении гироскопа, например, в плоскости OXY с угловой скоростью ωвх на поплавок 10 действует гироскопический момент Мг1= H•ωвх , где H - кинетический момент поплавка. Поплавок 10 стремится сохранить свое положение в пространстве и между осями вращения полости 2 и поплавка 10 появляется угол рассогласования β . При этом на поплавок 10 начинает действовать момент сил вязкого трения Mвт= Kтр•Ωβ•β , где Ктр - коэффициент сил вязкого трения поплавка о жидкость. Мвт уравновешивает гироскопический момент Мг1. При равенстве Мг1 = Мвт величина угла β принимает установившееся значение, ось поплавка 10 занимает положение ОХп.
Если поплавок 10 и полость 2 в результате изготовления, сборки и при изменении температуры имеют правильную сферическую форму, отклонение оси вращения поплавка в плоскости OXZ равно нулю, т.е. и перекрестная связь в гироскопе отсутствует.
В случае несферичности поплавка 10 и полости 2 ротора при отклонении поплавка 10 на угол α в плоскости OXZ на поплавок 10 действует уводящий момент Мув, вектор которого направлен по оси OZ и, в зависимости от вида несферичности, может совпадать по направлению с осью OZ или иметь противоположное направление. Возникновение Мув приводит к прецессии оси поплавка в плоскости OXZ до уравновешивания момента Мув моментом сил вязкого трения Мвт. Вследствие чего между осями вращения поплавка 10 и полости 2 в плоскости OXZ устанавливается угол ± β (знак определяется в зависимости от направления вектора уводящего момента), т. е. ось вращения поплавка 10 займет положение ОХп1. Перекрестная связь при этом имеет величину
Figure 00000008

Кольцевая вставка 18 позволяет обеспечить стабильность формы поплавка 10 за счет равномерной деформации его во всех направлениях при изменениях температуры.
Изменяя взаимное положение чашек 3, 4 ротора, т.е. "растягивая" или "сжимая" полость 2 в соответствии с графиком (фиг. 2) изменяется величина и направление компенсирующего момента, действующего на поплавок 10 со стороны сферической полости 2 в пределах ± Мкомп, что приводит к уменьшению коэффициента перекрестной связи и повышению точности гироскопа.
Для обеспечения условия нулевой плавучести поплавка 10 заливается расчетное количество жидкости 9, однако при изменении температуры объем жидкости меняется и условие Δm = 0 нарушается.
Введение цилиндрических полостей 5, 6 позволяет за счет перераспределения жидкости между сферической полостью 2 и цилиндрическими полостями 5, 6 стабилизировать радиус свободной поверхности жидкости и обеспечить равенство Мпвж.
Из графика (фиг. 3) следует, что при Rz/Rk =0,76 - 0,8 относительное изменение плавучести Δm/Мп в диапазоне температур ± 50oC не превышает ± 0,5% и увеличивается за границами этого диапазона.
При уменьшении температуры, например, до - 50oC объем жидкости 9 в зазоре между поплавком 10 и сферической полостью 2 уменьшается на величину ΔV , что вызывает увеличение радиуса свободной поверхности жидкости. Это уменьшение компенсируется за счет перетекания некоторого количества жидкости 9 из цилиндрических полостей 5, 6 через переходные каналы 11, 12, 13, 14, что приводит к изменению объема V только на величину ΔV1 и увеличивает радиус свободной поверхности жидкости, приближая его значение к значению при температуре заливки.
При температуре + 50oC происходит перетекание жидкости из сферической полости 2 в цилиндрические полости 5, 6, т.о. регулируется объем вытесненной поплавком жидкости 9.
По предлагаемому изобретению разработана конструкторская документация, по которой изготовлена опытная партия гироскопов.
Испытания подтвердили стабильные точностные характеристики гироскопов в рабочем диапазоне температур и при действии продольных и поперечных перегрузок.
Гироскоп прост в изготовлении и не требует дефицитных материалов.
По результатам испытаний предлагаемая конструкция гидродинамического гироскопа рекомендована к серийному производству.

Claims (1)

  1. Гидродинамический гироскоп, содержащий корпус, ротор со сферической полостью, частично заполненной жидкостью, вращающийся от внешнего электродвигателя относительно корпуса, помещенный в сферическую полость ротора поплавок, отличающийся тем, что поплавок, собранный из двух полусфер, дополнительно снабжен кольцевой вставкой, установленной с плотным контактом с сопрягаемыми поверхностями поплавка симметрично относительно его центра, ротор выполнен из двух жестко соединенных между собой через регулируемые элементы чашек, центры сфер которых смещены от центра ротора на величину L ≤ 0,004 • Rk, чашки снабжены вкладышами с образованием цилиндрических полостей, выполненных симметрично оси подвеса, торцевые поверхности вкладышей со стороны сферической полости изготовлены по сфере радиусом, равным радиусу сферической полости, а сферическая полость сообщена с цилиндрическими полостями посредством выполненных по вкладышах сквозных переходных каналов, при этом высота цилиндрической полости Hп определяется по формуле
    Figure 00000009

    Figure 00000010

    а радиальный зазор δ между сферической поверхностью ротора и поплавком определяется из условия
    Figure 00000011

    где Rz, Rп, Rk - радиусы основания цилиндрической полости, поплавка и сферической полости соответственно;
    ν - кинематическая вязкость жидкости.
RU95120281A 1995-11-29 1995-11-29 Гидродинамический гироскоп RU2116623C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95120281A RU2116623C1 (ru) 1995-11-29 1995-11-29 Гидродинамический гироскоп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95120281A RU2116623C1 (ru) 1995-11-29 1995-11-29 Гидродинамический гироскоп

Publications (2)

Publication Number Publication Date
RU95120281A RU95120281A (ru) 1997-10-27
RU2116623C1 true RU2116623C1 (ru) 1998-07-27

Family

ID=20174246

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95120281A RU2116623C1 (ru) 1995-11-29 1995-11-29 Гидродинамический гироскоп

Country Status (1)

Country Link
RU (1) RU2116623C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197374U1 (ru) * 2019-03-04 2020-04-23 Пётр Колестратович Плотников Гидродинамический гироскоп
RU2732789C1 (ru) * 2020-01-29 2020-09-23 Анатолий Борисович Попов Гироскоп с вращающейся камерой
RU202884U1 (ru) * 2020-05-12 2021-03-11 Пётр Колестратович Плотников Гидродинамический гироскоп - акселерометр
CN113260832A (zh) * 2019-01-24 2021-08-13 乌第有限合伙公司 使用环面形通道和图像处理的陀螺仪
CN113260832B (zh) * 2019-01-24 2024-06-11 乌第有限合伙公司 使用环面形通道和图像处理的陀螺仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Андрейченко К.П. Динамика поплавковых гироскопов и акселерометров. - М.: Машиностроение, 1987, с. 7 и 8. Распопов В.Я. Теория гироскопов с бескарда новыми подвесками. - Тула: 1990, с.52 и 53. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260832A (zh) * 2019-01-24 2021-08-13 乌第有限合伙公司 使用环面形通道和图像处理的陀螺仪
CN113260832B (zh) * 2019-01-24 2024-06-11 乌第有限合伙公司 使用环面形通道和图像处理的陀螺仪
RU197374U1 (ru) * 2019-03-04 2020-04-23 Пётр Колестратович Плотников Гидродинамический гироскоп
RU2732789C1 (ru) * 2020-01-29 2020-09-23 Анатолий Борисович Попов Гироскоп с вращающейся камерой
RU202884U1 (ru) * 2020-05-12 2021-03-11 Пётр Колестратович Плотников Гидродинамический гироскоп - акселерометр

Similar Documents

Publication Publication Date Title
US2785573A (en) Gas-floated gyroscopes
GB2419953A (en) Capacitance balance bubble levelling device
RU2116623C1 (ru) Гидродинамический гироскоп
US3226984A (en) Free gyroscope element
US3367194A (en) Rate gyroscope
US3722297A (en) Fluid bearing gyroscope
US3516280A (en) Fluid mass gyroscope
US3430276A (en) Torsion bar suspension for rate gyroscopes
US4838099A (en) Gyrocompass
US4517750A (en) Vertical indicating method and device
US4361040A (en) Integrating angular accelerometer
US3526145A (en) Acceleration integrating gyro
US3998106A (en) Selective flotation mechanism for a pendulous accelerometer proof mass
US2928281A (en) Sensitive instrument
Bai et al. Characteristics of spherical hydrostatic supporting system for floated inertial platform
US3261213A (en) Fluid rate-integrating gyro
US3205697A (en) Test turntable for inertial guidance devices
US2913907A (en) Gyroscopic apparatus
US3402610A (en) Gyroscopes
US2839930A (en) Gyroscope
US3303707A (en) Rate gyroscopes
US5708206A (en) Centripetal opposed pendulous accelerometer
US3323374A (en) Control apparatus
US4336967A (en) Bearing apparatus
US11754590B2 (en) Particle based accelerometer

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131130