RU2116521C1 - Эжектор - Google Patents

Эжектор Download PDF

Info

Publication number
RU2116521C1
RU2116521C1 RU96111387A RU96111387A RU2116521C1 RU 2116521 C1 RU2116521 C1 RU 2116521C1 RU 96111387 A RU96111387 A RU 96111387A RU 96111387 A RU96111387 A RU 96111387A RU 2116521 C1 RU2116521 C1 RU 2116521C1
Authority
RU
Russia
Prior art keywords
mixing chamber
nozzle
ejector
section
pressure medium
Prior art date
Application number
RU96111387A
Other languages
English (en)
Other versions
RU96111387A (ru
Inventor
И.И. Зайнятулов
В.В. Кудрявцев
С.Д. Каменский
А.И. Колесников
Original Assignee
Акционерное общество открытого типа "Галион"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Галион" filed Critical Акционерное общество открытого типа "Галион"
Priority to RU96111387A priority Critical patent/RU2116521C1/ru
Application granted granted Critical
Publication of RU2116521C1 publication Critical patent/RU2116521C1/ru
Publication of RU96111387A publication Critical patent/RU96111387A/ru

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

Изобретение предназначено для подачи низконапорной среды. Активные сопла эжектора снабжены кольцевыми хвостовиками, сопряженными с установочными отверстиями и образующими выходные каналы с постоянным или увеличивающимся по потоку высоконапорной среды диаметром. Сопло имеет вид втулки с обращенным к камере смешения косо срезанным торцом, поверхность которого повторяет поверхность сечения хвостовика внутренней поверхностью камеры смешения либо аппроксимирует указанную поверхность сечения с точностью не хуже 0,1 газодинамического диаметра сопла на его выходе. Достигаются стабильно высокие, предсказуемые рабочие характеристики. 3 з.п. ф-лы, 4 ил.

Description

Изобретение относится к струйной технике, конкретно к устройству эжекторов для подачи пассивной, низконапорной среды за счет энергии потока активной, высоконапорной среды.
Известен эжектор (аналог), содержащий корпус с подводящими патрубками высоконапорной и низконапорной сред, отводящий диффузор, соединенные с соответствующими подводящими патрубками форкамеру высоконапорной среды и канал низконапорной среды, переходящий в камеру смешения, предусмотренные в стенке камеры смешения и сообщающие последнюю с форкамерой наклонные активные сопла, выходные отверстия которых расположены на внутренней поверхности камеры смешения [1]. В устройстве-аналоге активные сопла образованы отверстиями, выполненными в кольцевой детали, которая вварена в корпус эжектора, что не позволяет осуществить подстройку эжектора при его отработке (доводке), как и перенастройку эжектора при его эксплуатации в случае изменения входных рабочих условий (расход, давление и термодинамические параметры рабочих сред). Кроме того, конструкция описанного эжектора нетехнологична ввиду необходимости точного выполнения наклонных отверстий достаточно сложной конфигурации в кольцевой корпусной детали.
Известен также эжектор (аналог), содержащий корпус с подводящими патрубками высоконапорной и низконапорной сред, отводящий диффузор, соединенные с соответствующими подводящими патрубками форкамеру высоконапорной среды и канал низконапорной среды, переходящий в камеру смешения, активные сопла с вставными входными участками, вмонтированными в наклонные установочные отверстия, которые выполнены в стенке камеры смешения и сообщают последнюю с форкамерой, причем выходные отверстия сопл расположены на внутренней поверхности камеры смешения [2]. В устройстве-аналоге входные участки активных сопл представляют собой втулки, ввинченные в корпус эжектора, а выходные участки сопл образованы каналами, являющимися продолжением установочных отверстий под втулки. Такая конструкция эжектора позволяет подстраивать и перенастраивать его лишь в узких пределах, поскольку выходной участок сопла является геометрически неизменным. Кроме того, конструкция описанного эжектора нетехнологична ввиду необходимости точного выполнения наклонных отверстий достаточно сложной конфигурации в кольцевой корпусной детали.
Известен эжектор (прототип), содержащий корпус с подводящими патрубками высоконапорной и низконапорной сред, отводящий диффузор, соединенные с соответствующими подводящими патрубками форкамеру высоконапорной среды и канал низконапорной среды, переходящий в камеру смешения, вставные активные сопла, вмонтированные в наклонные установочные отверстия, которые выполнены в стенке камеры смешения и сообщают последнюю с форкамерой [3]. Описанная конструкция-прототип технологична и, как принято считать, позволяет осуществить подстройку и перенастройку эжектора в широких пределах ввиду возможности смены проточного тракта активного сопла на всем его протяжении - от входа до выхода. Проектирование эжекторов по образцу описанного прототипа общепринято в современной практике, и именно так в 1991 г. авторитетной организацией был рассчитан и спроектирован экспериментальный эжектор для нужд газовой промышленности России. Последующие испытания этого спроектированного по всем правилам эжектора выявили, однако, существенное отклонение (занижение) фактических рабочих параметров от расчетных. Анализ выявившегося несоответствия показал, что главной его причиной является значительное превышение действительной входной площади камеры смешения над суммарной площадью выходных каналов активной и пассивной сред в данном месте. Указанное превышение площади, вызванное резким изменением проходного сечения канала за вставным активным соплом (наличием уступа) и не учитываемое в существующей практике проектирования эжекторов, в конкретных условиях усугубляется возмущением потока, приводящим к большим потерям полного давления и нарушению нормальной работы эжектора. Как показал дальнейший анализ результатов вышеупомянутых экспериментов, при изменении входных рабочих условий и перенастройке эжектора картина потока в нем может меняться трудно предсказуемым образом. В силу вышеизложенного возникает техническая задача создания такого устройства эжектора, которое позволяло бы легко перенастраивать его в широких пределах при обеспечении стабильно высоких, предсказуемых рабочих характеристик.
Указанная техническая задача решается за счет того, что в эжекторе, содержащем корпус с подводящими патрубками высоконапорной и низконапорной сред, отводящий диффузор, соединенные с соответствующими подводящими патрубками форкамеру высоконапорной среды и канал низконапорной среды, переходящий в камеру смешения, вставные активные сопла, вмонтированные в наклонные установочные отверстия, которые выполнены в стенке камеры смешения и сообщают последнюю с форкамерой, согласно изобретению, активные сопла снабжены кольцевыми хвостовиками, сопряженными с установочными отверстиями и образующими выходные каналы с постоянным или увеличивающимся по потоку высоконапорной среды диаметром, при этом сопло имеет вид втулки с обращенным к камере смешения косо срезанным торцом, поверхность которого повторяет поверхность сечения хвостовика внутренней поверхностью камеры смешения либо аппроксимирует указанную поверхность сечения с точностью не хуже 0,1 газодинамического диаметра сопла на его выходе. Торцевой срез может выполняться плоским либо состоять из двух плоскостей, пересекающихся по линии, ориентированной поперек или вдоль оси камеры смешения.
При осуществлении изобретения ожидается технический результат, состоящий в достижении стабильно высоких расчетных параметров эжектора при его простой перенастройке в широком рабочем диапазоне.
На фиг. 1 изображен общий вид в разрезе предлагаемого эжектора; на фиг. 2 - увеличенное изображение части упомянутого эжектора; на фиг. 3 - разрез А-А на фиг. 2, без соблюдения пропорций; на фиг. 4 - аналогичное фиг.2 изображение части эжектора, выполненного в соответствии с прототипом изобретения.
Предлагаемый эжектор (фиг. 1) содержит корпус 1, скрепленный по торцам (посредством шпилек) с отводящим диффузором 2 и крышкой 3. Внутри корпуса, между диффузором и крышкой, смонтирована коническая вставка 4, являющаяся стенкой расширяющегося по направлению к диффузору канала 5. Его начало сообщено с приемной камерой 6, выполненной в упомянутой крышке 3 и соединенной с подводящим патрубком низконапорной среды 7, который прикреплен (приварен) к упомянутому корпусу 1. Последний образует вместе с вставкой 4 кольцевую форкамеру 8 для высоконапорной среды, поступающей в эжектор через предусмотренный на его корпусе приварной патрубок 9. Форкамера сообщается с каналом 5 через вмонтированные в его стенке (во вставке 4) дискретные активные сопла 10 и 10' (2 ряда по 6 сопл в каждом); участок упомянутого канала, начиная с первого ряда сопл, представляет собой камеру смешения.
Устройство активного сопла (они аналогичны по конструкции) с местом его крепления показаны в увеличенном масштабе на фиг. 2. Сопло 10 представляет собой втулку со сверхзвуковым каналом Лаваля для потока высоконапорной среды, выполненным внутри цилиндрической детали с косо срезанным (скошенным) выходным торцом 10а, который обращен к камере смешения. Внешней цилиндрической поверхностью сопло сопряжено с поверхностью наклонного (к оси камеры смешения) установочного отверстия, выполненного в стенке 4. Сопло фиксируется благодаря предусмотренному со стороны входа резьбовому начальному участку, свинченному с переходной втулкой 11, которая, в свою очередь, удерживается ввинченной в стенку 4 входной втулкой 12; между деталями 10 - 12 установлены уплотнительные прокладки 13 и 14.
Возвращаясь к устройству сопла, отметим наличие в нем сопряженного с установочным отверстием кольцевого хвостовика 10б с размером канала, равным расчетному газодинамическому выходному диаметру сопла D (от этого места канал может расширяться к выходу). Кольцевой хвостовик сопла заканчивается торцевым срезом 10а, который повторяет поверхность сечения хвостовика внутренней поверхностью камеры смешения (является геометрическим продолжением последней). В конкретных производственных условиях изготовление сопла с указанной формой торцевого среза может оказаться затруднительным либо экономически нецелесообразным, и в рамках изобретения указанная форма может быть аппроксимирована другой поверхностью. Наиболее простыми вариантами аппроксимирующей поверхности могут быть одна плоскость или две плоскости, пересекающиеся по линии, ориентированной поперек или вдоль оси камеры смешения. Для обсуждаемого конкретного эжектора, в котором активные сопла смонтированы так, что их оси пересекаются с осью камеры смешения, аппроксимирующий плоский срез может проходить через точки а, b перпендикулярно плоскости чертежа на фиг. 2; двухплоскостной срез может быть представлен на фиг. 2 штриховой ломаной a-c-b (сочетание двух плоскостей, перпендикулярных плоскости чертежа и пересекающихся по линии, которая ориентирована поперек оси камеры смешения); в другом варианте двухплоскостной срез можно представить на фиг. 3 прямыми d-e и f-q (сочетание двух плоскостей, перпендикулярных плоскости чертежа и пересекающихся по линии, которая ориентирована вдоль оси камеры смешения).
Согласно изобретению, поверхность торцевого среза сопла аппроксимирует вышеупомянутую поверхность сечения хвостовика 10b внутренней поверхностью камеры смешения с точностью не хуже 0,1 размера D. В этом случае при реализуемом на практике максимальном размере D ≈ 10 мм в газодинамическом тракте эжектора будут местные уступы (выступы, впадины) высотой до ≈ 1 мм. С одной стороны, такие уступы не должны вызвать больших потерь полного давления в рабочем тракте эжектора. С другой стороны, указанные уступы не должны существенно снизить действительные рабочие характеристики эжектора по сравнению с расчетными, поскольку размер ≈ 1 мм как раз характерен для толщины выходной кромки сопла в хорошо предсказуемом эжекторе классической схемы (центральное сопло установлено по оси камеры смешения). Приведенное описание дает полное представление о работе эжектора.
Для более полного изложения существа изобретения на фиг. 4 представлено для сравнения устройство эжектора, аналогичного предложенному, но выполненного в соответствии с решением-прототипом, а именно представлено активное сопло 15 эжектора-прототипа с местом его установки. Как видно из фиг. 4, в месте расположения выходной кромки сопла центральный канал эжектора-прототипа претерпевает местное расширение за счет свободного кольцевого пространства Б, окружающего сопло, и в указанном месте площадь камеры смешения превышает суммарную площадь каналов высоко- и низконапорной сред. Это обстоятельство, однако, не учитывается в общепринятой методике расчета эжекторов, что приводит на практике к несоответствию сконструированного и изготовленного эжектора расчетной схеме и в результате - к отклонению действительных рабочих характеристик эжектора от проектных. Это отклонение, как показал наш опыт, может достигать недопустимо больших величин (100% и более), особенно в случае высокоскоростного, сверхзвукового течения в активном сопле, когда вероятны сильные возмущения потока в указанном выше кольцевом пространстве А, не учитываемые при выполнении расчета эжектора по общепринятой методике.
Изобретение позволяет устранить неучтенное кольцевое пространство вокруг активного сопла и в итоге получить эжектор с ожидаемыми проектными характеристиками в широко регулируемом диапазоне работы. Поднастройка и перенастройка эжектора достигается простой заменой активных сопл на экземпляры с другой геометрией расходного канала (очевидно, что в описанной конкретной конструкции эта операция начинается с вывинчивания детали 12).
Отметим, что представленные на фиг. 1 - 3 варианты конкретной конструкции не исчерпывают всех возможных устройств в пределах формулы изобретения: например, форкамера высоконапорной рабочей среды может размещаться по центральной оси эжектора, будучи окружена периферийной камерой смешения; активные сопла могут размещаться по винтовой или другой сложной линии, и при необходимости для их центровки могут предусматриваться установочные шлицы; в целях точной сборки могут предусматриваться кольцевые проставки, регулирующие вылет торца активного сопла относительно внутренней поверхности центрального канала, который может также выполняться цилиндрическим или сочетать участки с различными углами раскрытия и т. д., и т. п.
Наиболее целесообразной областью применения изобретения являются крупногабаритные газовые эжекторы со сверхзвуковыми активными соплами - типа применяемых в нефтегазовой промышленности для утилизации попутного нефтяного газа, при использовании в качестве активной среды высоконапорного природного газа с подачей смеси в магистральный трубопровод.

Claims (4)

1. Эжектор, содержащий корпус с подводящими патрубками для высоко- и низконапорной сред, отводящий диффузор, соединенные с соответствующими подводящими патрубками форкамеру высоконапорной среды и канал низконапорной среды, переходящий в камеру смешения, вставные активные сопла, вмонтированные в наклонные установочные отверстия, которые выполнены в стенке камеры смешения и сообщают последнюю с форкамерой, отличающийся тем, что активные сопла снабжены кольцевыми хвостовиками, сопряженными с установочными отверстиями и образующими выходные каналы с постоянным или увеличивающимся по потоку высоконапорной среды диаметром, при этом сопло имеет вид втулки с обращенным к камере смешения косо срезанным торцом, поверхность которого повторяет поверхность сечения хвостовика внутренней поверхностью камеры смешения либо аппроксимирует указанную поверхность сечения с точностью не хуже 0,1 газодинамического диаметра сопла на его выходе.
2. Эжектор по п.1, отличающийся тем, что торцевой срез сопла выполнен плоским.
3. Эжектор по п.1, отличающийся тем, что торцевой срез сопла выполнен в виде двух плоскостей, пересекающихся по линии, ориентированной поперек оси камеры смешения.
4. Эжектор по п.1, отличающийся тем, что торцевой срез сопла выполнен в виде двух плоскостей, пересекающихся по линии, ориентированной вдоль оси камеры смешения.
RU96111387A 1996-06-05 1996-06-05 Эжектор RU2116521C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96111387A RU2116521C1 (ru) 1996-06-05 1996-06-05 Эжектор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96111387A RU2116521C1 (ru) 1996-06-05 1996-06-05 Эжектор

Publications (2)

Publication Number Publication Date
RU2116521C1 true RU2116521C1 (ru) 1998-07-27
RU96111387A RU96111387A (ru) 1998-12-10

Family

ID=20181595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96111387A RU2116521C1 (ru) 1996-06-05 1996-06-05 Эжектор

Country Status (1)

Country Link
RU (1) RU2116521C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406338A (zh) * 2014-12-10 2015-03-11 中国航空工业集团公司金城南京机电液压工程研究中心 一种环形多喷嘴引射结构
RU2559115C1 (ru) * 2014-05-08 2015-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-Газпром ВНИИГАЗ" Газовый эжектор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3. Конструкция и проектирование жидкостных ракетных двигателе й. / Под общей редакцией Г.Г.Гахуна. - М: Машиностроение, 1989, с.225. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559115C1 (ru) * 2014-05-08 2015-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-Газпром ВНИИГАЗ" Газовый эжектор
CN104406338A (zh) * 2014-12-10 2015-03-11 中国航空工业集团公司金城南京机电液压工程研究中心 一种环形多喷嘴引射结构
CN104406338B (zh) * 2014-12-10 2016-08-24 中国航空工业集团公司金城南京机电液压工程研究中心 一种环形多喷嘴引射结构

Similar Documents

Publication Publication Date Title
US3735778A (en) Driving of fluids
US7174717B2 (en) Helical channel fuel distributor and method
US3945574A (en) Dual orifice spray nozzle using two swirl chambers
EP0044494A1 (en) Nozzle for ring jet pump
EP3803208B1 (en) Pre-swirl pressure atomizing tip
KR100287309B1 (ko) 내연기관용연료분사노즐
US5054456A (en) Fuel injection
JPH0783436A (ja) ガスタービンエンジンの燃焼器用燃料噴射器
GB1307706A (en) Spray nozzles
KR100312160B1 (ko) 가스유동에의해서운반되는점성액체분할공정
EP1124057A2 (en) Fuel injector with a cone shaped bent spray
RU2116521C1 (ru) Эжектор
US4590768A (en) Fuel distribution valve flow trimming and locking means
US3598321A (en) Leaf spring nozzle flow control
US3779460A (en) Acoustic nozzle
US4354470A (en) Fuel supply apparatus in internal combustion engine
US5167116A (en) Small airblast fuel nozzle with high efficiency inner air swirler
US2569081A (en) Spray nozzle
WO2000019146A2 (en) Fuel spray nozzle
US5144804A (en) Small airblast fuel nozzle with high efficiency inner air swirler
CN107923319A (zh) 具有集成过滤器的可变流体流量设备
NO981458L (no) FremgangsmÕte og anlegg for produksjonen av en fluid-finmasse som herdes etter st÷ping
US5129582A (en) Turbine injector device and method
US3642211A (en) Liquid sprayers
US2812978A (en) Fuel injection system for ramjet aircraft