RU2115831C1 - Способ регенеративного подогрева питательной воды в струйном подогревателе - Google Patents

Способ регенеративного подогрева питательной воды в струйном подогревателе Download PDF

Info

Publication number
RU2115831C1
RU2115831C1 RU97101417/06A RU97101417A RU2115831C1 RU 2115831 C1 RU2115831 C1 RU 2115831C1 RU 97101417/06 A RU97101417/06 A RU 97101417/06A RU 97101417 A RU97101417 A RU 97101417A RU 2115831 C1 RU2115831 C1 RU 2115831C1
Authority
RU
Russia
Prior art keywords
steam
condensate
phase
flow
liquid
Prior art date
Application number
RU97101417/06A
Other languages
English (en)
Other versions
RU97101417A (ru
Inventor
Владимир Владимирович Фисенко
Original Assignee
Владимир Владимирович Фисенко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Владимирович Фисенко filed Critical Владимир Владимирович Фисенко
Priority to RU97101417/06A priority Critical patent/RU2115831C1/ru
Application granted granted Critical
Publication of RU2115831C1 publication Critical patent/RU2115831C1/ru
Publication of RU97101417A publication Critical patent/RU97101417A/ru

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Изобретение предназначено для использования на тепловых электростанциях. Конденсат и пар, отведенный из турбогенератора, разгоняют, после чего организуют смешение этого пара и конденсата с образованием потока двухфазной смеси конденсата и пара с переводом смеси на сверхзвуковой режим течения, после чего организуют в двухфазном сверхзвуковом потоке скачок давления с переводом двухфазного потока в скачке давления в однофазный дозвуковой жидкостный поток с одновременным нагревом конденсата за счет конденсации пара и дополнительным нагревом конденсата за счет схлопывания пузырьков пара в скачке давления. После этого нагретый жидкостный поток конденсата направляют в деаэратор. Способ, описанный выше, позволяет повысить КПД и надежность работы струйного аппарата. 2 з.п.ф-лы, 2 ил.

Description

Изобретение относится к струйной технике, преимущественно к струйным установкам, используемым на тепловых электростанциях с системой регенеративного подогрева питательной воды.
Известен способ регенеративного подогрева питательной воды на тепловых и атомных энергоустановках с целью повышения их термического КПД за счет отбора пара из ступеней турбины для нагрева воды. Нагрев осуществляют в поверхностных подогревателях, при этом конденсат греющего пара возвращается в конденсатор (см., например книгу "Общая теплотехника" под редакцией Корницкого С. Я. и Рубинштейна Я.М. - М.: Государственное энергетическое издательство, 1952, с. 372).
Недостатком этого способа является его сравнительно низкая эффективность, так как часть тепла греющего пара, отобранного из турбины, уходит с конденсатом в конденсатор и там безвозвратно теряется, поскольку тепло в конденсаторе отдается окружающей среде. Кроме того, потери на трение в теплообменниках приводят к большим затратам мощности на создание с помощью насосов циркуляции жидкой среды, в частности на подачу питательной воды из конденсатора в деаэратор и из деаэратора в котел-парогенератор. Кроме того, мировая статистика говорит о том, что большинство вынужденных остановок турбины связано с выходом из строя поверхностных подогревателей вследствие разрушения в них трубок.
Наиболее близким к описываемому является способ регенеративного подогрева воды в струйном подогревателе, включающий подачу пара в турбогенератор, отбор пара из турбогенератора, отвод из последнего отработавшего пара в конденсатор, подачу конденсата из конденсатора и пара, отобранного из турбогенератора, в струйный аппарат с конденсацией пара в струйном аппарате и подогревом за счет этого конденсата с последующей подачей подогретого конденсата в качестве питательной воды в деаэратор и далее в котел-парогенератор (см. там же, с. 370-372).
Замена поверхностного подогревателя подогревателем смесительного типа в данном случае не привела к ожидаемому положительному результату, поскольку использованные в данном способе струйные аппараты имели большие габариты, работали неустойчиво и ненадежно и требовали больших энергетических затрат, так как требовалась установка отдельного насоса для перекачки воды.
Целью изобретения является повышение надежности работы струйного аппарата подогревателя питательной воды, повышение КПД его работы и расширение зоны его устойчивой работы.
Указанная выше цель достигается тем, что в способе регенеративного подогрева питательной воды в струйном подогревателе, включающем подачу пара в турбогенератор, отбор пара из турбогенератора, отвод из последнего отработавшего пара в конденсатор, подачу конденсата из конденсатора и пара, отобранного из турбогенератора, в струйный аппарат - струйный подогреватель с конденсацией пара в струйном аппарате и подогревом за счет этого конденсата с последующей подачей подогретого конденсата - питательной воды в деаэратор и далее в котел-парогенератор, причем конденсат и отведенный из турбогенератора пар разгоняют, после чего организуют смешение пара и конденсата с образованием двухфазной смеси конденсата и пара с переводом потока двухфазной смеси на сверхзвуковой режим течения, после чего организуют в двухфазном сверхзвуковом потоке скачок давления с переводом двухфазного потока в скачке давления в однофазный жидкостный поток за счет схлопывания пузырьков пара и интенсивной конденсации пара, причем одновременно в скачке давления нагревают конденсат за счет интенсивной конденсации пара и дополнительно нагревают конденсат за счет схлопывания пузырьков пара в скачке давления, а далее нагретый конденсат в качестве питательной воды направляют в деаэратор.
В случае необходимости возможна организация дополнительного торможения конденсата в струйном аппарате, например в диффузоре, установленном на выходе камеры смешения струйного аппарата, причем в этом случае конденсат дополнительно нагревается. При необходимости регулирования режима подогрева в широком диапазоне возможна установка двух и более струйных аппаратов параллельно. Возможна также организация многоступенчатой системы подогрева конденсата путем ступенчатого отбора пара из турбогенератора из ряда его ступеней или отбор пара из одной его ступени со ступенчатой подачей пара в струйный аппарат, он же струйный подогреватель питательной воды. В этом случае отобранный пар подают в несколько последовательно по ходу конденсата расположенных ступеней струйного аппарата, причем в каждой ступени организуют разгон жидкости и пара, создание двухфазного сверхзвукового потока конденсата и отобранного пара и затем в каждой ступени организуют скачок давления, сопровождаемый переводом потока в однофазный жидкостный и дозвуковой и одновременным нагревом жидкостного потока конденсата.
Как показали проведенные исследования, возможна организация процесса смешения и нагрева жидкости в струйном аппарате в скачке давления.
В свою очередь для организации скачка давления необходимо выполнение ряда условий, в частности была установлена следующая зависимость:
Figure 00000002

где P1 - давление перед скачком давления;
P2 - давление в скачке давления;
β - объемное соотношение паровой и жидкой фаз в скачке давления;
k - показатель изоэнтропы однородной двухфазной смеси;
M - число Маха в смеси.
Было также установлено, что давление перед скачком и давление в скачке являются взаимно зависимыми величинами и что между давлением торможения P0, давлением перед скачком P1 и давлением в скачке P2 существует определенная зависимость, определяемая показателем изоэнтропы и объемным соотношением фаз в смеси сред, что в свою очередь позволяет создать требуемую для реализации описываемого способа геометрию струйного аппарата.
Таким образом, было достигнуто выполнение поставленной, вышеуказанной цели путем создания струйного аппарата, в котором достигнута возможность разогнать потоки пара и жидкости, образовать из них двухфазную смесь, что привело к резкому снижению требуемой скорости для организации сверхзвукового режима течения, и уже затем тормозить сверхзвуковой двухфазный поток, что в свою очередь позволило, как показали проведенные исследования, организовать проведение сразу двух процессов, а именно: обеспечить перевод потока в однофазный жидкостный и, во-вторых, обеспечить дополнительный нагрев жидкости, поскольку процесс нагрева обеспечивается за счет протекания и организации двух процессов - конденсации пара и схлопывания пузырьков пара в скачке давления.
Как результат, за счет процесса подогрева описанным выше способом достигнуто выполнение поставленной цели.
На фиг. 1 схематически представлен разрез струйного аппарата - подогревателя питательной воды; на фиг. 2 - схема подключения струйного аппарата в составе энергоустановки, в которой реализуется описываемый способ регенеративного подогрева питательной воды.
Установка для реализации описываемого способа содержит деаэратор 1, турбогенератор 2, струйный аппарат - струйный подогреватель питательной воды - 3, автоматический регулятор 4 перепуска конденсата, блок управления 5 и задвижки 6 с электроприводом, управляемые от блока управления 5.
На фиг. 1 показано изменение давления подводимых пара и конденсата вдоль проточной части струйного аппарата 3.
Описываемый способ регенеративного подогрева питательной воды реализуется следующим образом.
Покажем его реализацию на более общем многоступенчатом способе подвода отбираемого пара. Пуск системы регенеративного подогрева осуществляется подачей пара в последнюю ступень (между сечениями V и VI по фиг. 1) одного или двух (минимальной нагрузкой) струйных аппаратов 3. Подаваемый из конденсатора (не показан) конденсат и отбираемый из турбогенератора 2 пар между сечениями V и VI разгоняют и смешивают между собой, причем в сечении VI скорость потока смеси сред достигает максимальной величины, а давление в потоке падает до минимальной величины, что вызывает организацию сверхзвукового режима течения двухфазного потока. Организации сверхзвукового режима течения способствует то, что в двухфазном потоке величина скорости звука резко падает. За сечением VI путем торможения потока организуют в двухфазном сверхзвуковом потоке скачок давления с ростом давления до величины P2. При этом в результате интенсивной конденсации пара в скачке давления, а также в результате протекания процесса схлопывания пузырьков пара, сопровождаемого мгновенным ростом давления пара в схлопываемых пузырьках в тысячи раз, в скачке давления происходит нагрев жидкости и переход двухфазного потока в жидкостный однофазный поток нагретой (подогретой) жидкости, которая в качестве питательной воды подается из струйного аппарата 3 под давлением в деаэратор 1. Одновременно организация описанных выше процессов разгона жидкости и пара и их последующего смешения между сечениями V и VI вызывает снижение давления в предшествующей ступени струйного аппарата 3 (сечения II-IV по фиг. 1), что облегчает пуск пара в этой ступени, а следовательно, запуск этой ступени, при этом в этой ступени организуют описанные выше процессы разгона, смешения, организации сверхзвукового режима течения, торможения, скачка давления и нагрева жидкости, как это было описано выше и как это показано на фиг. 1. После запуска первой ступени струйного аппарата 3, последний переходит в штатный режим эксплуатации по подогреву питательной воды. При увеличении нагрузки на турбогенераторе 2 (увеличение расхода пара на турбине) уменьшается уровень жидкости в деаэраторе 1. Через блок управления 5 подается команда на открытие автоматического регулятора 4, что вызывает поступление дополнительного количества питательной воды в деаэратор 1. При снижении нагрузки на турбогенераторе 2 и, как следствие, увеличении уровня жидкости в деаэраторе 1 по сигналу блока 5 уменьшается подача жидкости через автоматический регулятор 4. Таким образом, путем перепуска жидкости обеспечивается стабильный режим работы струйных аппаратов 3.
В связи с вышеизложенным следует остановиться на заложенном алгоритме автоматического регулирования режима работы при помощи блока управления 5, который предусматривает непрерывное регулирование мощности последовательным включением и отключением струйных аппаратов 3 в зависимости от изменения нагрузки на турбогенераторе 2. Непрерывное регулирование предусматривает также постоянное регулирование расхода через автоматический регулятор 4, а именно уменьшение расхода через него при снижении нагрузки и увеличение расхода с увеличением нагрузки на турбогенераторе 2, причем за счет этого поддерживается постоянный перепад давления на одном или нескольких (в зависимости от режима работы) струйных аппаратах 3.
В исходном состоянии автоматический регулятор 4 находится в промежуточном (среднем) положении, что позволяет обеспечить плавное регулирование уровня жидкости в деаэраторе 1 путем изменения соотношения количества нагреваемой жидкости в струйных аппаратах 3 и жидкости (конденсата), поступающей через автоматический регулятор 4. Максимальный расход жидкости через автоматический регулятор 4 выбирается равным расходу через струйные аппараты 3 (в нашем случае расходу двух струйных аппаратов 3). Как отмечалось выше, вначале запускают один струйный аппарат 3, который обеспечивает требуемый уровень нагрева жидкости (хотя не исключено, что может быть запущено сразу несколько струйных аппаратов 3). При увеличении расхода жидкости из деаэратора 1 (увеличение нагрузки на турбогенераторе 2 требует большего количества питательной воды для производства пара) постепенно расход воды через автоматический регулятор 4 достигнет своего максимального значения (максимальное открытие регулятора 4). Тогда по сигналу с автоматического регулятора 4 блок управления 5 дает команду на открытие задвижки 6 на выходе второго струйного аппарата 3 и второй струйный аппарат 3 запускается в работу, а автоматический регулятор 4 при этом возвращается в среднее положение. В дальнейшем при снижении нагрузки на турбогенераторе 2 уровень жидкой среды в деаэраторе 1 начинает увеличиваться и тогда по сигналу блока управления 5 через автоматический регулятор 4 уменьшают расход конденсата, а если регулятор 4 достигнет своего нижнего предела (будет перекрыт), по сигналу того же блока управления 5 закрывают задвижку 6 на втором струйном аппарате 3 и последний останавливают, а автоматический регулятор 4 в то же время опять переводят в его среднее положение. Таким образом, подача конденсата по байпасной линии через автоматический регулятор 4 и последовательное включение или отключение установленных параллельно струйных аппаратов 3 обеспечивает плавное регулирование уровня нагретой питательной воды в деаэраторе 1.
Увеличением или уменьшением подачи пара в струйные аппараты 3 можно также регулировать интенсивность скачка давления в струйных аппаратах 3, а соответственно регулировать режим нагрева питательной воды. Параллельная установка нескольких струйных аппаратов 3 позволяет повысить надежность работы всей системы подогрева питательной воды, так как в случае выхода из строя по какой-либо причине одного из струйных аппаратов его можно отключить, а другие аппараты продолжают выполнение своих функций, причем путем переброски пара от вышедшего из строя аппарата 3 на другие струйные аппараты 3 можно путем повышения интенсивности скачка давления в них компенсировать недостающий нагрев питательной воды. Как результат, предотвращается простой турбогенератора, что позволяет избежать значительных потерь (простой блока мощностью 100 МВт приводит к потере в сутки около 1 млрд. рублей).
Выполнение установки, работающей по описанному способу, регенеративного подогрева питательной воды в струйном подогревателе позволяет резко уменьшить потери тепла в конденсаторе с паром, уменьшаются капитальные и эксплуатационные затраты, во много раз уменьшаются массогабаритные характеристики оборудования по организации регенеративного подогрева.
Описанный способ позволяет свести к минимуму изменения в схеме питания котла-парогенератора, предоставляется возможность уменьшить мощности насосов, которые обеспечивают подачу питательной воды в системах регенеративного типа за счет того, что часть необходимого напора обеспечивается самими струйными аппаратами 3.
Настоящее изобретение может быть использовано на тепловых и атомных электростанциях, где организован регенеративный способ подогрева питательной воды.

Claims (3)

1. Способ регенеративного подогрева питательной воды в струйном подогревателе, включающий подачу пара в турбогенератор, отбор пара из турбогенератора, отвод из последнего отработавшего пара в конденсатор, подачу конденсата из конденсатора и пара, отобранного из турбогенератора, в струйный аппарат с конденсацией пара в струйном аппарате и нагревом за счет этого конденсата с последующей подачей подогретого конденсата в деаэратор и далее в котел-парогенератор, отличающийся тем, что конденсат и пар, отведенный из турбогенератора, разгоняют, после чего организуют смешение этого пара и конденсата с образованием потока двухфазной смеси конденсата и пара с переводом смеси на сверхзвуковой режим течения, после чего организуют в двухфазном сверхзвуковом потоке скачок давления с переводом двухфазного потока в скачке давления за счет схлопывания пузырьков пара и за счет интенсивной конденсации пара в однофазный жидкостный дозвуковой поток с одновременным нагревом конденсата за счет интенсивной конденсации пара в конденсате и дополнительным нагревом конденсата за счет схлопывания пузырьков пара в скачке давления, после чего нагретый жидкостный поток конденсата направляют в деаэратор.
2. Способ по п.1, отличающийся тем, что жидкостный поток конденсата до подачи в деаэратор дополнительно тормозят в струйном аппарате и за счет этого дополнительно нагревают жидкостный поток конденсата.
3. Способ по п.1, отличающийся тем, что организуют многоступенчатую подачу пара в струйный аппарат путем последовательного ступенчатого отбора пара из нескольких ступеней турбогенератора и организуют в каждой ступени струйного аппарата образование двухфазной смеси конденсата и пара с переводом потока в сверхзвуковой режим течения и организацией в каждой ступени скачка давления с переводом потока в однофазный жидкостный и одновременным нагревом жидкостного потока конденсата.
RU97101417/06A 1997-02-03 1997-02-03 Способ регенеративного подогрева питательной воды в струйном подогревателе RU2115831C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97101417/06A RU2115831C1 (ru) 1997-02-03 1997-02-03 Способ регенеративного подогрева питательной воды в струйном подогревателе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97101417/06A RU2115831C1 (ru) 1997-02-03 1997-02-03 Способ регенеративного подогрева питательной воды в струйном подогревателе

Publications (2)

Publication Number Publication Date
RU2115831C1 true RU2115831C1 (ru) 1998-07-20
RU97101417A RU97101417A (ru) 1999-02-27

Family

ID=20189485

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97101417/06A RU2115831C1 (ru) 1997-02-03 1997-02-03 Способ регенеративного подогрева питательной воды в струйном подогревателе

Country Status (1)

Country Link
RU (1) RU2115831C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Общая теплотехника/Под ред. С.Я.Корницкого и др.-М.: Государственное энергетическое издательство, 1952, с.372. 2. *

Similar Documents

Publication Publication Date Title
US4674285A (en) Start-up control system and vessel for LMFBR
US4428190A (en) Power plant utilizing multi-stage turbines
JP3222127B2 (ja) 一軸型加圧流動床コンバインドプラント及びその運転方法
US4043130A (en) Turbine generator cycle for provision of heat to an external heat load
JP2008151503A (ja) 廃熱ボイラ
US3818697A (en) Power plant and method for generating peak power therein
EP1799971A1 (en) Electric power plant with thermal storage medium
US4072182A (en) Pressure staged heat exchanger
GB1407531A (en) Steam power stations
US3194020A (en) Method and apparatus relating to vapor generation
US3451220A (en) Closed-cycle turbine power plant and distillation plant
JP2747543B2 (ja) 蒸気タービン装置を低負荷レベルで運転する方法
RU2115831C1 (ru) Способ регенеративного подогрева питательной воды в струйном подогревателе
RU2169297C1 (ru) Способ регенеративного подогрева питательной воды в струйном подогревателе
US4656335A (en) Start-up control system and vessel for LMFBR
CN1138943C (zh) 强制循环锅炉的操纵方法及实施该方法的锅炉
CN100420899C (zh) 按卧式结构设计的直流式蒸汽发生器及其运行方法
US4608945A (en) Apparatus for recirculating boiler fluid
US3199494A (en) Devices for improving operating flexibility of steam-electric generating plants
WO1998056495A1 (en) Method for obtaining a two-phase supersonic flow with heat supply in jet pump plant
US3366093A (en) Start-up system for once-through vapor generators
RU2294028C2 (ru) Одноконтурная установка с ядерным реактором и трансзвуковыми струйными аппаратами
RU2225567C1 (ru) Газораспределительная станция
CN116771712B (zh) 离心压缩机防喘开车系统及方法
JPS5929901A (ja) 排熱回収ボイラのドラム水位制御装置

Legal Events

Date Code Title Description
NF4A Reinstatement of patent
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070204

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: LICENCE FORMERLY AGREED ON 20010622

Effective date: 20101229