RU2114358C1 - Вихревая труба в.и.метенина - Google Patents

Вихревая труба в.и.метенина Download PDF

Info

Publication number
RU2114358C1
RU2114358C1 RU96105457A RU96105457A RU2114358C1 RU 2114358 C1 RU2114358 C1 RU 2114358C1 RU 96105457 A RU96105457 A RU 96105457A RU 96105457 A RU96105457 A RU 96105457A RU 2114358 C1 RU2114358 C1 RU 2114358C1
Authority
RU
Russia
Prior art keywords
axial
chamber
regenerator
heat exchanger
cold
Prior art date
Application number
RU96105457A
Other languages
English (en)
Other versions
RU96105457A (ru
Inventor
Владимир Иванович Метенин
Original Assignee
Владимир Иванович Метенин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Иванович Метенин filed Critical Владимир Иванович Метенин
Priority to RU96105457A priority Critical patent/RU2114358C1/ru
Publication of RU96105457A publication Critical patent/RU96105457A/ru
Application granted granted Critical
Publication of RU2114358C1 publication Critical patent/RU2114358C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

В вихревой трубе, имеющей камеру (4) энергоразделения газа, теплообменник-регенератор (14), струйные эжекторы (20), аксиальную сопловую решетку (17), диафрагму (5) с осевым диффузором (6), размещен аксиальный пневмомеханический генератор (7) поличастотных звуковых колебаний, примыкающий к осевому диффузору (6). В вихревой трубе также может быть установлен еще один дополнительный аксиальный пневмомеханический генератор (16) поличастотных звуковых колебаний и внешний патрубок (18) для отвода холодного потока от камеры (II) холода к телообменнику-регенератору (14). Генератор 16 является одновременно дросселем. Использование изобретения позволит повысить КПД вихревой трубы за счет утилизации теплоты холодного потока в теплообменнике-регенераторе (14) и за счет повышения эффективности процесса энергоразделения газа. 2 з.п.ф-лы, 3 ил.

Description

Изобретение относится к холодильной технике и предназначено для эффективного использования вихревого эффекта в вихревых трубах. Они достаточно экономичны, не имеют вращающихся частей и поэтому при длительной эксплуатации надежны, мобильны и имеют по сравнению с применяемыми турбодетандерами практически неорганический ресурс работы. Ввиду этих преимуществ предлагаемые вихревые трубы найдут применение в криогенной технике для сжижения газов, ракетной технике и пригодны в космической технике.
Известна "Вихревая труба В.И. Метенина" (прототип) [1].
В вихревой трубе сжатый газ подается в многосопловый ввод, где расширяется и получает закрутку. Далее закрученный поток попадает в коническую вихревую камеру энергоразделения, где происходит процесс энергетического разделения газа с образованием двух потоков, из которых один, перемещающийся по периферии и имеющий более высокие температуру и давление, выходит через лопаточный диффузор (нерециркулирующая часть) в кольцевой патрубок и далее в эжектор. Другая периферийная часть завихренного потока (рециркулирущая часть) поступает в кольцевую щель на периферии тела аэродинамической сопловой решетки и далее в теплообменник - регенератор с оребренной внутренней и наружной поверхностями теплообмена. Вращаясь, он омывает внутренние ребра поверхности теплообмена и через золотниковый клапан и транспортную зону поступает в центральную часть аэродинамической сопловой решетки. Проходя решетку с цилиндрическими соплами газ разбивается на мелкие струи и энергично вздувается в приосевую полость камеры энергоразделения. Для того, чтобы упорядочить переток охлажденного рециркулирующего газа в выходной части теплообменника-регенератора установлен золотниковый клапан с возможностью осевого перемещения и регулировки перетока оптимального количества рециркулирующего газа.
Охлажденный в теплообменнике-регенераторе газ перемещается в приосевой области камеры энергоразделения от аэродинамической сопловой решетки к диафрагме и, дополнительно охладившись, выходит через отверстие в диафрагме в осевой и щелевой диффузоры и далее к потребителю.
В качестве активного газа эжектора служит периферийный горячий поток, выходящий из лопаточного диффузора (нерециркулирующая часть горячего потока). Пассивным потоком эжектора (охлаждающей средой теплообменника-регенератора) является атмосферный воздух, просасываемый через теплообменник-регенератор эжектором, работающим от нерециркулирующей части горячего потока вихревой трубы.
В рассматриваемой вихревой трубе недостаточно полно используется потенциальная энергия холодного потока газа и потенциальная энергия рециркулирующего горячего потока и поэтому она нуждается в конструктивных и технологических изменениях и дополнениях.
Целью изобретения является расширение области рационального применения вихревых труб путем частичного превращения потенциальной энергии холодного и рециркулирующего горячего потоков газа в энергию звуковых и ультразвуковых колебаний, т.е. в непрерывно действующие механические импульсы, распространяющиеся по газовым каналам и дополнительно создающие вихри по всему объему энергоразделения и таким образом повышающие эффективность процесса энергоразделения газа, и следовательно, КПД вихревой трубы, а также КПД трубы путем утилизации теплоты холодного потока в теплообменнике-регенераторе.
Это достигается тем, что вихревая труба дополнительно содержит аксиально расположенный пневмомеханический генератор поличастотных звуковых и ультразвуковых колебаний, работающих от холодного потока, причем его рабочая поверхность обращена к осевому диффузору и диафрагме холодного потока, а также пневмомеханический генератор звуковых и ультразвуковых колебаний, являющийся одновременно дросселем рециркулирующего горячего потока, рабочая поверхность которого обращена к аксиально сопловой решетке, и внешний патрубок для отвода оптимального количества холодного потока в теплообменник-регенератор для регенерации тепла.
На фиг. 1 изображена вихревая труба, продольный разрез; на фиг. 2 разрез А-А на фиг. 1; на фиг. 3 разрез Б-Б на фиг. 1.
Вихревая труба имеет кольцевой ресивер 1, с одной стороны которого вставлен тангенциальный сопловой аппарат 2. Крышкой 3 сопловой аппарат прижимается к камере энергетического разделения газа 4, закрепленной в корпусе ресивера. В центральной части крышки располагается диафрагма 5 с осевым диффузором 6. На выходе диффузора установлен пневмомеханический генератор поличастотных звуковых и ультразвуковых колебаний 7, состоящий из конфузорного сопла 8, резонанс-камеры 9 и резонатора 10. Резонатор с целью регулирования одним концом закреплен в задней стенке холодного ресивера (камере холода) 11.
На горячей стороне камеры энергоразделения к корпусу трубы 12 крепится противоточный теплообменник-регенератор 14 с кожухом 15. В центральной части теплообменника-регенератора на входе рециркулирующего горячего потока смонтирован пневмомеханический генератор звуковых и ультразвуковых колебаний 16, с противоположной стороны которого, т.е. в конце транспортной зоны, крепится аксиальная сопловая решетка 17.
Камера холода соединяется с внешним контуром теплообменника-регенератора патрубком 18, в котором находится диафрагма 19 для измерения расхода газа, идущего на рециркуляцию в теплообменник-регенератор. Холодный поток из теплообменника-регенератора отсасывается четырьмя струнными эжекторами 20 и выдается в атмосферу. При эксплуатации и исследованиях величины массы рециркулирующего холодного потока изменяются сбросом некоторого ее количества к потребителю холодного газа или в атмосферу при помощи вентиля 21.
К корпусу вихревой трубы крепятся эжекторы и хромель-копелевые термопары 22 и 23 типа Т-49-5 для измерения температур горячего и рециркулирующего холодного потоков газа. Проточные части эжекторов находятся внутри корпусов глушителей шума 24.
Рабочий процесс вихревой трубы осуществляется следующим образом.
Сжатый газ из сети поступает в ресивер вихревой трубы, где замеряются его параметры состояния, а затем в тангенциальный многосопловый аппарат, где он расширяется, ускоряется и получает закрутку. По мере дальнейшего движения закрученного потока в вихревой камере энергоразделения происходит процесс энергоразделения газа с образованием двух потоков, из которых один, перемещающийся по периферии камеры и имеющий более высокую температуру и несколько большее давление, выходит в кольцевой ресивер и далее в сопла четырех струйных эжекторов. Другая периферийная часть завихренного горячего потока (рециркулирующая часть) поступает в кольцевую щель на периферии аксиальной сопловой решетки и далее в эффективный теплообменник-регенератор, представляющий собой цилиндрическую трубу с непрерывными спиральными оребрениями как внешней, так и внутренней поверхностей теплообмена. Оребрения представляют собой восемнадцатизаходные прямоугольные ленточные резьбы с большими одинаковыми шагами. Причем ребра составляют одно целое со стенкой трубы. Он омывается горячим и холодным потоками при давлениях меньше давления P1. При высоких значениях P1 указанные потоки вихревой трубы поступают в него практически при критическом давлении.
Рециркулирующий горячий поток, вращаясь с высокими окружной и осевой составляющими скорости, омывает внутренние ребра поверхности теплообмена, охлаждается, тормозится и через аксиальный пневмомеханический генератор поличастотных звуковых и ультразвуковых колебаний, состоящий из конфузорного сопла, резонанс-камеры и резонатора, поступает в транспортную зону, отделенную от поверхности теплообмена кольцевым слоем теплоизоляционного материала. Из транспортной зоны газ поступает в аксиальную сопловую решетку, микросопла которой расположены параллельно продольной оси камеры энергоразделения. Проходя решетку с цилиндрическими микросоплами, газ разбивается на мелкие струи, ускоряется и энергично вдувается в приосевую полость вихревой камеры энергоразделения, интенсифицируя в ней турбулентность, способствующую повышению эффективности процесса энергоразделения. Опыты показывают, что с уменьшением диаметров сопл аксиальной и тангенциальной сопловых решеток эффект процесса энергоразделения газа в камере улучшается. Это, по-видимому, объясняется тем, что при этом изменяются звуковые колебания, т.е. изменяется частота звука, когда амплитуды смещения частиц и амплитуды их скорости относительно невелики, но чрезвычайно велики амплитуды ускорений, при которых амплитуда давлений значительно возрастает.
Коническая камера энергоразделения работает по двум совмещенным принципам работы отдельных вихревых устройств: противоточного вихревого эжектора и конической противоточной вихревой камеры энергоразделения с аксиальной и тангенциальной сопловыми решетками. Ее оптимальный режим работы зависит от большого количества факторов и определяется опытным путем.
Вихревой эжекционный эффект, создаваемый горячим концом конической камеры энергоразделения, увеличивает степень расширения газа вихревой трубы и скорости истечения его из осесимметричных микросопл тангенциальной и аксиальной решеток. Они дробят и ускоряют газовые потоки. Вследствие этого увеличивается турбулизация газа в камере энергоразделения и как следствие этого улучшаются характеристики вихревой трубы. Опыты показывают, что без аксиальной сопловой решетки эффективность процесса энергоразделения резко ухудшается.
При большом числе микросопл в тангенциальной и аксиальной сопловых решетках, являющихся независимыми генераторами звуковых волн, а также волн, исходящих от пневмомеханических генераторов звука, никакого влияния одной волны на распространение другой не происходит. Каждая частица среды, находящаяся путем волн, совершает колебания с периодом этой волны. Если эта частица находятся на пути нескольких волн, то, как известно, она одновременно участвует в колебаниях всех волн, т.е. ее движение представляет собой сумму колебаний всех волн. Таким образом, наложение большого числа волн есть сложение их колебаний в каждой точке среды, через которую все эти волны, включая отраженные, проходят, т.е. происходит то, что называется интерференцией волн. В результате интерференции звуковых волн они слагаются и дают результирующие колебательные движения с наибольшими возможными амплитудами частиц газа. При этом в результате интерференционного усиления плотности звуковой энергии в разных точках камеры энергоразделения возрастают и будут максимальными.
Предлагаемая конструкция вихревой трубы представляют собой устройство, в котором поличастотная звуковая энергия, создаваемая микросоплами тангенциальной и аксиальной сопловыми решетками, пневмомеханическими регераторами звуковых колебаний и другими элементами трубы, сепарируется в камере в тепло газовых потоков разных температур уровней, выходящих из разных мест вихревой трубы.

Claims (3)

1. Вихревая труба, содержащая коническую камеру энергетического разделения газа с сопловым тангенциальным вводом сжатого газа, диафрагму с осевым и щелевым диффузорами для вывода холодного потока, лопаточный диффузор для вывода горячего потока и установленную за ним аксиальную сопловую решетку, перекрывающую сечение горячего конца вихревой камеры энергоразделения, теплообменник-регенератор, примыкающий к горячему торцу вихревой камеры энергоразделения, внутренняя поверхность теплообмена которого является продолжением периферийной части камеры и расположена с возможностью обеспечения ее омывания рециркулирующей частью горячего потока, эжектор, установленный с возможностью обеспечения его работы от нерециркулирующей части горячего потока, для охлаждения теплообменника-регенератора охлаждающей средой, золотник, установленный на выходе из теплообменника регенератора для обеспечения возможности дозирования подачи в камеру рециркулирующей части горячего потока, отличающаяся тем, что труба дополнительно снабжена аксиальным пневмомеханическим генератором поличастотных звуковых колебаний, примыкающим к осевому диффузору и работающим от холодного потока, причем резонатор генератора установлен с возможностью осевого перемещения, а его рабочая поверхность обращена к осевому диффузору и диафрагме холодного потока газа.
2. Труба по п. 1, отличающаяся тем, что она снабжена дополнительным аксиальным пневмомеханическим генератором поличастотных звуковых колебаний, являющимся одновременно дросселем рециркулирующего горячего потока, причем резонатор генератора установлен с возможностью осевого перемещения, а его рабочая поверхность обращена к аксиальной сопловой решетке.
3. Труба по пп. 1 и 2, отличающаяся тем, что для отвода оптимального количества холодного потока от камеры холода к теплообменнику-регенератору она снабжена внешним патрубком.
RU96105457A 1996-03-21 1996-03-21 Вихревая труба в.и.метенина RU2114358C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96105457A RU2114358C1 (ru) 1996-03-21 1996-03-21 Вихревая труба в.и.метенина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96105457A RU2114358C1 (ru) 1996-03-21 1996-03-21 Вихревая труба в.и.метенина

Publications (2)

Publication Number Publication Date
RU96105457A RU96105457A (ru) 1998-06-20
RU2114358C1 true RU2114358C1 (ru) 1998-06-27

Family

ID=20178315

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96105457A RU2114358C1 (ru) 1996-03-21 1996-03-21 Вихревая труба в.и.метенина

Country Status (1)

Country Link
RU (1) RU2114358C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095890A1 (fr) * 2002-05-07 2003-11-20 Gaidukevich Vadim Vladislavovi Procede pour utiliser l'energie potentielle d'un flux de gaz comprime lors de la separation du flux par tourbillons et dispositif de mise en oeuvre correspondant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095890A1 (fr) * 2002-05-07 2003-11-20 Gaidukevich Vadim Vladislavovi Procede pour utiliser l'energie potentielle d'un flux de gaz comprime lors de la separation du flux par tourbillons et dispositif de mise en oeuvre correspondant

Similar Documents

Publication Publication Date Title
US6415887B1 (en) Refractive wave muffler
US7565808B2 (en) Refrigerator
US5423483A (en) Sootblower
US20100206664A1 (en) Acoustic panel
US20040105755A1 (en) Fogging device for gas turbines
US5461868A (en) Method and device for gas cooling
CA2366806C (en) Sootblower nozzle assembly with an improved downstream nozzle
WO1995025929A1 (en) Sootblower nozzle
US3911858A (en) Vortex acoustic oscillator
US5760348A (en) Noise attenuating apparatus
RU2114358C1 (ru) Вихревая труба в.и.метенина
US5240384A (en) Pulsating ejector refrigeration system
US20220026059A1 (en) Pulsating combustion device with improved energy conversion efficiency and reduced noise level
US5319948A (en) Low temperature generation process and expansion engine
Zhidkov et al. Detailed consideration of the shock-wave (pulsation) concept of the Ranque–Hilsch vortex effect
JPH1137577A (ja) ノズル装置
JP2005076570A (ja) エジェクタおよび冷凍システム
JP7208064B2 (ja) パッケージ型圧縮機
US4196793A (en) Method of and device for attenuating the noise radiated by gas jets
RU2079067C1 (ru) Вихревой термотрансформатор
CA1116509A (en) Venturi scrubber
Abdelmaksoud et al. A Review on Thermal-Fluid Behavior in Sweeping Jet Fluidic Oscillators
SU1574918A1 (ru) Глушитель шума вентил тора
RU2041432C1 (ru) Вихревая труба в.и.метенина
SU1548481A1 (ru) Глушитель шума