RU2106511C1 - Ракетно-турбинный двигатель комбинированного типа - Google Patents

Ракетно-турбинный двигатель комбинированного типа Download PDF

Info

Publication number
RU2106511C1
RU2106511C1 RU92015433A RU92015433A RU2106511C1 RU 2106511 C1 RU2106511 C1 RU 2106511C1 RU 92015433 A RU92015433 A RU 92015433A RU 92015433 A RU92015433 A RU 92015433A RU 2106511 C1 RU2106511 C1 RU 2106511C1
Authority
RU
Russia
Prior art keywords
engine
rocket
mode
rtd
turbine engine
Prior art date
Application number
RU92015433A
Other languages
English (en)
Other versions
RU92015433A (ru
Inventor
В.А. Поршнев
Н.В. Федорец
Original Assignee
Ермишин Александр Викторович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ермишин Александр Викторович filed Critical Ермишин Александр Викторович
Priority to RU92015433A priority Critical patent/RU2106511C1/ru
Publication of RU92015433A publication Critical patent/RU92015433A/ru
Application granted granted Critical
Publication of RU2106511C1 publication Critical patent/RU2106511C1/ru

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Использование: в двигателестроении. Сущность изобретения: ракетно-турбинный двигатель комбинированного типа состоит из ракетно-турбинного двигателя, образующего совместно с его корпусом и подвижным кожухом двухрежимный прямоточный воздушно-реактивный двигатель. Внутри центрального тела в укороченном сопле внешнего расширения установлен жидкостный ракетный двигатель с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата. 1 ил.

Description

Изобретение относится к устройствам, характеризующимся сжатием потока за счет скоростного напора воздуха, то есть к прямоточным воздушно-реактивным двигателям (ПВРД), а еще точнее - к комбинированным ракетно-турбинным двигателям (РТД).
В двигателях данного класса представляется возможным сочетать преимущества турбореактивных двигателей (ТРД) - малый расход топлива (горючего) с преимуществами ракетных двигателей (РД) - с хорошей скоростной и высотной характеристиками.
Имеется опыт разработки двигателей, состоящих из ТРД и РД, имеющих общий привод и размещенных в едином корпусе.
В массовом отношении также РТД выгоднее, чем простая комбинация ТРД и РД.
Наиболее близким по принципу работы и техническому устройству к заявляемому изобретению является ракетно-турбинный двигатель комбинированного типа ATR.
Данный двигатель ATR был предложен для перспективного одноступенчатого воздушно-космического самолета (ВКС) военного назначения и может быть отработан, как утверждают зарубежные специалисты, через 10-15 лет. Для такого типа двигателя характерно расширение диапазона достигаемых скоростей и высот полета. Несмотря на то, что данный тип двигателя еще не освоен ни одной страной, дальнейшее развитие ракетной и космической техники уже сейчас требует своего дальнейшего совершенствования, например, при разработке и создании аэрокосмического самолета.
Для летательных аппаратов, перспективных до 2000 г. и далее, требуется широкий диапазон плавного изменения скорости их полета, начиная от дозвуковых и кончая гиперзвуковыми, а также, чтобы их двигатели работали экономично на любых высотах вплоть до безвоздушного пространства.
Рассматриваемая схема известного РТД комбинированного типа обеспечивает вариацию параметров силовой установки в случаях включения в работу ТРД в условиях атмосферы или ЖРД в космосе. Плавное изменение режимов работы с изменением высоты и скорости полета летательного аппарата в этом известном двигателе не обеспечивается по той причине, что нет промежуточного режима между ВРД и ЖРД (при больших числах Маха свыше 5-6 наиболее эффективным является применение ПВРД).
Кроме того, для данного типа РТД характерны сравнительно большие размеры смонтированного в нем ЖРД из-за использования высотного сопла Лаваля. Даже в случае применения раздвижного сопла частично ухудшаются как массовые, так и геометрические характеристики двигателя.
Задача изобретения состояла в разработке ракетно-турбинного двигателя комбинированного типа, в котором возможно объединение различных типов двигательных установок ЛА для обеспечения различных режимов полета в широком диапазоне скоростей и высот.
Решение поставленной задачи означает создание двигателя, работа которого эквивалентна работе ТРД, ЖРД и двухрежимного ПВРД (сверхзвукового ПВРД-СПВРД и гиперзвукового ПВРД-ГПВРД), а также возможность их комбинации в процессе полета летательного аппарата.
Поставленная задача решается тем, что ракетно-турбинный двигатель (РТД) комбинированного типа, представляющий собой комбинацию элементов РТД с жидкостным ракетным двигателем (ЖРД), смонтированных в едином корпусе и образующих блочную конструкцию, согласно изобретению снабжен внешним кожухом, прикрепленным к корпусу РТД внутренними пилонами, внутри которых размещены элементы топливной аппаратуры, а во входном и выходном сечениях установлены кольцевые регулирующие створки, образующие совместно с подвижным кожухом и корпусом РТД двухрежимный ПВРД, причем передние регулирующие створки установлены на подвижном кожухе, задние - на внешнем кожухе, а сопловая часть представляет собой двойное концентрическое укороченное сопло внешнего расширения с центральным телом, внутри которого установлен ЖРД с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата.
На чертеже представлена кинематическая схема ракетно-турбинного двигателя комбинированного типа.
Двигатель состоит из двух основных двигателей, объединенных в одной конструкции: ТРД 1 и ЖРД 2. Кроме того, в состав РТД входят внешний кожух 3, внутренние пилоны 4, задние кольцевые створки 5, подвижный кожух 6, передние кольцевые створки 7, двойное концентрическое сопло 8, общий турбонасосный агрегат (ТНА) 9, блоки топливной автоматики 10, редуктор 11 с разобщающей муфтой и с изменяемым передаточным числом, газогенератор 12, блок пусковых клапанов 13, выдвижной конус 14, осевой компрессор 15, турбина 16.
РТД может функционировать в нескольких различных режимах. При этом газогенератор 12 и турбонасосный агрегат 9 функционируют на всех режимах. Управление подачей компонентов топлива осуществляют блоки топливной автоматики 10.
Первый режим работы РТД комбинированного типа - режим турбореактивного двигателя.
При этом ЖРД и ПВРД не функционируют.
Исходное положение элементов РТД: подвижной кожух 6 сдвинут таким образом, что кольцевые створки 7 раскрыты полностью, что обеспечивает максимальный подвод воздуха к осевому компрессору 15 и полное перекрытие входного сечения ПВРД; осевой компрессор 15 соединен через редуктор 11 с турбиной 16. Створки 5 закрыты полностью.
РТД в данном режиме работает следующим образом.
Запуск осуществляется аналогично запуску самолетного турбореактивного двигателя. Раскрученная после запуска турбина 16 приводит в действие осевой компрессор 15 и насосы ТНА 9, из которых используется только насос для подачи негорючего в газогенератор 12. Расходом горючего управляют блоки топливной автоматики 10. Горючее через топливную аппаратуру поступает в газогенератор 12, где смешивается с воздухом, поступающим от осевого компрессора 15, и сгорает. Продукты сгорания вращают турбину, а затем истекают через внутренний контур двойного концентрического сопла внешнего расширения с центральным телом - ЖРД 2, создавая реактивную тягу.
Второй режим работы РТД комбинированного типа - режим сверхзвукового ПВРД (СПВРД) совместно с турбореактивным двигателем (ТРД)
При этом ЖРД не работает.
Исходное положение элементов РТД: подвижный кожух 6 частично сдвинут вперед навстречу потоку; кольцевые створки 7 открывают входное сечение ПВРД и прикрывают входное сечение ТРД; кольцевые створки 5 прикрыты, образуя критическое сечение во внешнем контуре двойного концентрического сопла 8; остальные элементы РТД находятся в положении, как указано в первом режиме.
Этот режим предпочтительно использовать после достижения ЛА скорости звука. Работа ТРД в данном режиме аналогична работе его в первом режиме с учетом того, что начинает функционировать сверхзвуковой ПВРД. При этом помимо генератора 12 ТРД горючее подается через топливную аппаратуру, установленную во внутренних пилонах 4, в камеру сгорания ПВРД, где, смешиваясь с атмосферным воздухом, сгорает. Создаваемое при этом рабочее тело истекает через критическое сечение, образованное корпусом ТРД и кольцевыми створками 5, а затем разгоняется по центральному телу внешнего контура двойного концентрического сопла 8 и выходит в атмосферу, создавая силу тяги помимо силы тяги ТРД. В этом режиме параметры входных потоков как РТД так и ПВРД регулируются кольцевыми створками 7 и выдвижным конусом 14. Параметры выходного потока ПВРД регулируются изменением площади критического сечения с помощью кольцевых створок 5.
Третий режим работы РТД комбинированного типа - режим гиперзвукового ПВРД(ГПВРД).
При этом ЖРД не функционирует. ТРД работает на минимальном режиме, необходимом только для функционирования ТНА 9.
Исходное положение элементов ТРД: подвижный кожух перемещается вперед навстречу входному потоку, полностью открывая входное сечение ГПВРД и прикрывая входное сечение РТД до минимального значения площади поперечного сечения; передаточное число редуктора 11 имеет минимальное значение, створки 5 открыты полностью. Остальные элементы РТД находятся в положении, как указано в первом режиме.
Работа РТД в данном режиме заключается в следующем.
Подача горючего осуществляется аналогично подаче горючего во втором режиме. ТРД работает на минимальном режиме, который обеспечивает только необходимую частоту вращения турбины 16 ТНА 9 и практически тягу не создает. Сила тяги в данном режиме создается только ГПВРД. Работа ГПВРД имеет отличительные особенности относительно работы СПВРД. Сжатие входного потока дозвукового, как в СПВРД, не происходит. Смешение горючего осуществляется со сверхзвуковым потоком атмосферного воздуха. Соответственно продукты сгорания (рабочее тело) тоже имеют сверхзвуковую скорость. Следовательно, дальнейший разгон потока может осуществляться не сужением, а расширением площади поперечного сечения канала. Поэтому отпадает необходимость создания критического сечения. Следовательно, кольцевые створки 5 полностью открыты. Разгон потока осуществляется с помощью центрального тела внешнего контура двойного концентрического сопла 8. Рабочее тело из газогенератора 12, пройдя через лопатки турбины, протекает через внутренний контур сопла 8, что повышает эффективность работы внешнего его контура.
Четвертый режим работы РТД комбинированного типа - режим ЖРД.
Работает только ЖРД 2. Исходное положение элементов РТД: кольцевые створки 5 закрыты; подвижный кожух 6 перемещен навстречу входному потоку в крайнее положение; кольцевые створки 7 закрыты; вал осевого компрессора 15 разобщен с валом турбины 16 при помощи разобщающей муфты редуктора 11; блоки топливной автоматики обеспечивают подачу окислителя и горючего в камеру ЖРД 2 и в газогенератор 12.
Работа РТД в данном режиме заключается в следующем.
При поступлении окислителя и горючего в газогенератор 12 они воспламеняются. При этом образуется рабочее тело (продукты сгорания), которое вращает турбину 16. Турбина приводит в действие насосы окислителя и горючего ТНА 9. Из ТНА 9 компоненты топлива с помощью блоков топливной автоматики 10 подаются в камеру сгорания ЖРД 2 и в газогенератор 12 с целью создания рабочего тела для турбины 16. Продукты сгорания из кольцевой камеры ЖРД 2 истекают через критическое сечение и разгоняются соплом внешнего расширения с центральным телом. Таким образом создается сила тяги. Рабочее тело, вытекающее из газогенератора 12, пройдя через лопатки турбины, истекает через внутренний контур двойного концентрического сопла 8 наружу.
Пятый режим работы РТД комбинированного типа - совместный режим ГПВРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению в третьем режиме за исключением того, что окислитель и горючее подаются в камеру сгорания ЖРД 2.
Работа РТД в этом режиме аналогична работе его в третьем и четвертом режимах, осуществляемых параллельно.
Шестой режим работы РТД комбинированного типа - режим совместной ТРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению для первого режима (режима ТРД) за исключением того, что окислитель и горючее подаются в камеру ЖРД 2.
Работа РТД в этом режиме аналогична его работе в первом (режим ТРД) и в четвертом (режим ЖРД), осуществляемых параллельно.
Седьмой режим работы РТД комбинированного типа - совместный режим ТРД, СПВРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению для второго режима (совместный режим ТРД и СПВРД) за исключением того, что в камеру сгорания ЖРД подаются окислитель и горючее. Работа РТД в этом режиме аналогична его работе во втором (совместный режим ТРД и СПВРД) и в четвертом (режим ЖРД) режимах, осуществляемых параллельно.
Разработанная конструктивная схема заявляемого РТД комбинированного типа дает возможность разработки в следующем столетии как нового пилотируемого транспортно-космического и аэрокосмического летательных аппаратов, так и новых видов вооружения. В настоящее время данным работам за рубежом уделяется большое внимание. Например, фирмы США и Японии к 1992 г. планируют завершить разработки двигателя ATREX, совмещающего в одной конструкции ТРД и двухрежимный ПВРД.
Заявляемый в качестве изобретения РТД комбинированного типа позволяет значительно расширить диапазон плавного изменения скорости ЛА, начиная от дозвуковых ее значений и кончая гиперзвуковыми на различных высотах его полета. Это позволит решить такие задачи космического полета, как стыковка и причаливание космических аппаратов, их маневрирование на орбите и сход с нее, ориентация и стабилизация в космическом пространстве, а также посадка на безатмосферные планеты и др.
Конструктивное выполнение всех типов двигателей в едином устройстве позволяет значительно улучшить массовые и геометрические характеристики ЛА по сравнению с автономным их использованием.
Используемое сопло внешнего расширения обеспечивает расчетный режим работы двигателя на всех высотах полета ЛА, что повышает экономичность его работы.
Кроме того, экспериментальные исследования показали, что такие сопла целесообразно применять при значительном их укорочении. Например, уменьшение длины контура сопла на 50% практически не приводит к потерям тяги, а сокращение его длины на 80-90% уменьшает величину тяги не более, чем на 1,5-2%. Однако выигрыш в габаритах и массе оказывается весьма существенным.
Большие перспективы открываются при использовании разработанного типа двигателя для военных целей, например для перехвата баллистических ракет, для создания новых, практически неуязвимых ракетоносителей и др.

Claims (1)

  1. Ракетно-турбинный двигатель комбинированного типа, представляющий собой комбинацию элементов ракетно-турбинного двигателя с жидкостным ракетным двигателем, смонтированных в едином корпусе и образующих блочную конструкцию, отличающийся тем, что он снабжен внешним кожухом, прикрепленным к корпусу ракетно-турбинного двигателя внутренними пилонами, внутри которых размещены элементы топливной аппаратуры, а во входном и выходном сечениях установлены кольцевые регулирующие створки, образующие совместно с подвижным кожухом и корпусом ракетно-турбинного двигателя двухрежимный прямоточный воздушно-реактивный двигатель, причем передние регулирующие створки установлены на подвижном кожухе, задние - на внешнем кожухе, а сопловая часть представляет собой двойное концентрическое укороченное сопло внешнего расширения с центральным телом, внутри которого установлен жидкостный ракетный двигатель с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата.
RU92015433A 1992-12-30 1992-12-30 Ракетно-турбинный двигатель комбинированного типа RU2106511C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92015433A RU2106511C1 (ru) 1992-12-30 1992-12-30 Ракетно-турбинный двигатель комбинированного типа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92015433A RU2106511C1 (ru) 1992-12-30 1992-12-30 Ракетно-турбинный двигатель комбинированного типа

Publications (2)

Publication Number Publication Date
RU92015433A RU92015433A (ru) 1995-01-27
RU2106511C1 true RU2106511C1 (ru) 1998-03-10

Family

ID=20134776

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92015433A RU2106511C1 (ru) 1992-12-30 1992-12-30 Ракетно-турбинный двигатель комбинированного типа

Country Status (1)

Country Link
RU (1) RU2106511C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561757C1 (ru) * 2014-01-14 2015-09-10 Николай Борисович Болотин Трехкомпонентный воздушно-реактивный двигатель
RU2648480C2 (ru) * 2013-01-18 2018-03-26 Эйрбас Дифенс Энд Спейс Сас Устройство запуска турбонасоса ракетного двигателя
RU2669220C2 (ru) * 2013-10-11 2018-10-09 Риэкшн Энджинс Лимитед Двигатель
RU2742515C1 (ru) * 2019-12-29 2021-02-08 Андрей Владимирович Иванов Комбинированная силовая установка многоразовой первой ступени ракеты-носителя

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Курзинер Р.И. Реактивные двигатели для больших сверхзвуковых скоростей полета. М., Машиностроение, 1989, с.167, рис.5.3 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648480C2 (ru) * 2013-01-18 2018-03-26 Эйрбас Дифенс Энд Спейс Сас Устройство запуска турбонасоса ракетного двигателя
RU2669220C2 (ru) * 2013-10-11 2018-10-09 Риэкшн Энджинс Лимитед Двигатель
RU2561757C1 (ru) * 2014-01-14 2015-09-10 Николай Борисович Болотин Трехкомпонентный воздушно-реактивный двигатель
RU2742515C1 (ru) * 2019-12-29 2021-02-08 Андрей Владимирович Иванов Комбинированная силовая установка многоразовой первой ступени ракеты-носителя

Similar Documents

Publication Publication Date Title
US6966174B2 (en) Integrated bypass turbojet engines for air craft and other vehicles
US7762077B2 (en) Single-stage hypersonic vehicle featuring advanced swirl combustion
US5052176A (en) Combination turbojet-ramjet-rocket propulsion system
CN109028146B (zh) 混合燃烧器组件和操作方法
US7134271B2 (en) Thrust vectoring aft FLADE engine
US5101622A (en) Aerospace propulsion
US20030192303A1 (en) Integrated bypass turbojet engines for aircraft and other vehicles
US6668542B2 (en) Pulse detonation bypass engine propulsion pod
EP1534945A2 (en) Integrated bypass turbojet engines for aircraft and other vehicles
US10087886B2 (en) Turbofan thrust reverser system
US4220001A (en) Dual expander rocket engine
JPH02283846A (ja) 組合せ式駆動装置
US3374631A (en) Combination subsonic and supersonic propulsion system and apparatus
CN112797442A (zh) 旋转爆轰燃烧的方法和系统
US3812672A (en) Supercharged ejector ramjet aircraft engine
RU2142058C1 (ru) Пульсирующий двигатель детонационного горения типа порфед
RU2106511C1 (ru) Ракетно-турбинный двигатель комбинированного типа
RU2602656C1 (ru) Возвращаемая ступень ракеты-носителя, способ ее работы и газотурбинный двигатель
RU2603305C1 (ru) Возвращаемая ступень ракеты-носителя
US2823516A (en) Ducted fan power plant for aircraft
JPH0672574B2 (ja) ターボラムロケット結合推進機関の構造
US20230193856A1 (en) Multi-mode propulsion system
US3016694A (en) Combination turbojet and ramjet engine
RU2710841C1 (ru) Многоразовый ракетоноситель криштопа (мрк), гибридная силовая установка (гсу) для мрк и способ функционирования мрк с гсу (варианты)
RU2609547C1 (ru) Возвращаемая ступень ракеты-носителя и способ ее работы