RU2094940C1 - Способ регулирования скорости асинхронных электродвигателей - Google Patents

Способ регулирования скорости асинхронных электродвигателей Download PDF

Info

Publication number
RU2094940C1
RU2094940C1 RU96104124A RU96104124A RU2094940C1 RU 2094940 C1 RU2094940 C1 RU 2094940C1 RU 96104124 A RU96104124 A RU 96104124A RU 96104124 A RU96104124 A RU 96104124A RU 2094940 C1 RU2094940 C1 RU 2094940C1
Authority
RU
Russia
Prior art keywords
speed
electric motor
connection
duration
motor
Prior art date
Application number
RU96104124A
Other languages
English (en)
Other versions
RU96104124A (ru
Inventor
В.И. Малинин
Л.И. Малинин
В.Д. Макельский
В.А. Тюков
Original Assignee
Новосибирский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Новосибирский государственный технический университет filed Critical Новосибирский государственный технический университет
Priority to RU96104124A priority Critical patent/RU2094940C1/ru
Application granted granted Critical
Publication of RU2094940C1 publication Critical patent/RU2094940C1/ru
Publication of RU96104124A publication Critical patent/RU96104124A/ru

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)

Abstract

Использование: в электроприводах переменного тока однофазного и трехфазного питания, работающих в повторно-кратковременных режимах. Сущность: в способе регулирования скорости асинхронного электродвигателя путем изменения длительности подключения γ двигателя 2 к источнику питания 1 на периоде подключения T одновременно с изменением длительности подключения γ двигателя 2 к источнику питания 1 регулируют период подключения T, причем максимальное значение периода подключения T не превышает четырех значений электромагнитной постоянной времени двигателя 2. Подключение двигателя 2 обеспечивается полупроводниковым прерывателем 3, управляемым по каналу и T от генератора 4. В результате обеспечивается широкий диапазон регулирования скорости при малых пределах колебаний скорости. 4 ил.

Description

Изобретение относится к области электротехники и может быть применено в электроприводах переменного тока с асинхронными двигателями любой фазности, работающих в повторно-кратковременных режимах.
Известен способ регулирования скорости асинхронных электродвигателей путем изменения действующего значения напряжения питания (Пиотровский Л.М. Электрические машины. М. Госэнергоиздат, 1950, с. 465). Способ весьма неэффективен, поскольку механические характеристики при этом обладают большой крутизной и не могут обеспечить широкий диапазон регулирования скорости.
Известен способ регулирования скорости асинхронных электродвигателей, являющийся прототипом и заключающийся в том, что изменяют длительность подключения двигателя к источнику питания на периоде (цикле) подключения. (Андреев В.П. Сабинин Ю.А. Основы электропривода, М-Л. Госэнергоиздат, 1963, с. 615). Требуемое значение средней скорости двигателя обеспечивается изменением длительности работы двигателя за время полного цикла (периода подключения). Механические характеристики этого способа по своему виду похожи на механические характеристики асинхронного двигателя при регулировании скорости изменением напряжения питающей сети.
Недостатки прототипа:
способ не может обеспечить широкий диапазон регулирования скорости;
при малой относительной длительности подключения двигателя к источнику питания и постоянном периоде (цикле) подключения возникают значительные колебания скорости (момента) электродвигателя.
Задачей изобретения является создание способа регулирования скорости асинхронных двигателей, обеспечивающего широкий диапазон регулирования скорости при низких пределах колебаний скорости.
Поставленная задача решается следующим образом:
Изменяют длительность подключения двигателя к источнику питания на периоде подключения, при этом одновременно с изменением длительности подключения двигателя к источнику питания регулируют период подключения, причем максимальное значение периода подключения не превышает четырех значений электромагнитной постоянной времени двигателя.
На фиг. 1 изображена функциональная схема, реализующая предлагаемый способ с двигателем однофазного исполнения, на фиг. 2 естественная механическая характеристика и зависимость скорости от действующего значения тока статора асинхронных двигателей, на фиг. 3 зависимость мгновенного значения тока статора от времени разгона асинхронных двигателей, на фиг. 4 - искусственные механические характеристики асинхронных двигателей по предлагаемому способу.
Функциональная схема (фиг. 1), реализующая предлагаемый способ в однофазном исполнении, состоит из следующих узлов: 1 однофазный источник питания ИП, 2 однофазный асинхронный двигатель АД, 3 полупроводниковый прерыватель ПП, 4 управляемый генератор УГ. Причем, нулевой зажим источника питания 1 соединен с асинхронным двигателем 2, а фаза источника питания 1 соединена с асинхронным двигателем 2 через полупроводниковый прерыватель 3, который соединен с управляемым генератором 4 по каналу длительности включения γ и длительности периода включения Т.
В качестве источника питания 1 (ИП) используется сеть 380/220 В частотой 50 Гц. Асинхронный двигатель 2 (АД) по отношению к сети является однофазным, а по отношению к конструкции может быть однофазным, двухфазным конденсаторным или трехфазным конденсаторным. Полупроводниковый прерыватель 3 (ПП) может иметь различные исполнения, например, представлять собой два параллельно включенных тиристора с противоположно направленными проводимостями. Управляемый генератор 4 должен иметь независимые регулировки по изменению длительности включения g и длительности периода включения Т и может быть выполнен как на базе полупроводниковых приборов, так и микросхем (Горшков Б.И. Элементы радиоэлектронных устройств. М. "Радио и связь". 176 с.)
Способ осуществляется следующим образом. Производится включение источника питания 1 и управляемого генератора 4. С управляемого генератора 4 в соответствии с установленными регулировками на полупроводниковый прерыватель 3 поступает сигнал заданной длительности включения g и длительности периода включения Т. При этом в течение длительности g полупроводниковый прерыватель 3 обеспечивает двухстороннюю проводимость переменному току, т.е. двигатель 2 подключается к источнику питания 1. В течение длительности t T g двигатель 2 отключен от источника питания 1. В соответствии с временами T, g по двигателю 2 протекает некоторое действующее значение тока J, и устанавливается соответствующая скорость вращения n. Для изменения скорости вращения устанавливают генератором 4 новые времена g1, T1, изменяя действующее значение тона на J1, соответственно получая скорости n1.
Основополагающим является зависимость скорости вращения от тока статора, представленная на фиг. 2 и присущая всем типам асинхронных двигателей. На фиг. 2 также приведена типовая механическая характеристика асинхронных двигателей. Из сравнения механической характеристики с зависимостью скорости вращения (n) от тока статора (I0) следует, что, если при разгоне двигателя зафиксировать действующее значение тока, то двигатель будет работать на искусственной механической характеристике, причем максимальный момент искусственной механической характеристики (Mи max), будет соответствовать поддерживаемому току (Iи) по естественной механической характеристике. Импульсный способ регулирования скорости вращения асинхронных электродвигателей от источника питания позволяет зафиксировать действующее значение тока, т.е. создать условия работы двигателя на искусственной механической характеристике.
Важной особенностью способа является существенная разница в проведении регулирования скорости при T const и T var. Из приведенной на фиг. 3 зависимости мгновенного тока статора от времени разгона двигателя по естественной механической характеристике (штриховая линия) следует, что мгновенный ток определяется суммой апериодической составляющей, затухающей при длительности, равной четырем значениям электромагнитной постоянной времени двигателя (Tэ), и периодической составляющей, амплитуда которой уменьшается с увеличением скорости двигателя. Если регулирование скорости проводить при T > 4Tэ const (как в прототипе), то действующее значение тока статора To может только уменьшаться, причем начальное значение Io при γ T будет всегда значительно меньше I0 max (фиг. 2). Следовательно, при T const принципиально возможным является изменение действующего значения тока статора I0 в узких пределах, что не позволяет обеспечить широкий диапазон регулирования скорости. Кроме того, при g < T const возникают столь значительные колебания скорости, что использование способа становится невозможным. Поэтому известный способ (прототип) при T const был признан неэффективным, т.к. возможности его практического применения весьма ограничены.
При предлагаемом способе T var, причем выполнение условия Tmax ≅ 4Tэ позволяет регулировать действующее значение тока статора I0 в диапазоне изменения скорости от нуля до скорости холостого хода естественной механической характеристики. Поскольку период коммутации является высоким по сравнению с электромеханической постоянной времени двигателя, то колебания скорости практически отсутствуют. Электромагнитная постоянная времени асинхронных двигателей Tэ 0,015.0,06 c, где меньшие значения относятся к двигателям малой мощности (менее 10 кВт) (Шуйский В.П. Расчет электрических машин. Энергия. 1968, 732 с.). В связи с указанным, предельное значение переменного периода включений не должно превышать 0,24 с.
Следовательно, выполняя условия одновременного изменения длительности подключения двигателя к источнику питания и длительности периода включения, при максимальном значении периода подключения, не превышающем четырех значений электромагнитной постоянной времени двигателя, достигают широкого диапазона регулирования скорости при малых пределах колебаний скорости. Механические искусственные характеристики предлагаемого способа представлены на фиг. 4. Линейная часть этих характеристик соответствует практически постоянным значениям фиксированного действующего значения тока и обладает высокой степенью жесткости.
Предлагаемый способ применим как к однофазным, так и к трехфазным асинхронным двигателям. Реализация способа в трехфазном исполнении предусматривает установку полупроводниковых прерывателей в каждой фазе и их синхронное управление от одного управляемого генератора.
Установка требуемой скорости может осуществляться как плавным, так и дискретным одновременным изменением двух регулировок (длительности включения и длительности периода). Однако предпочтительным является дискретное программируемое задание требуемой скорости с выходом на заданную скорость из неподвижного состояния (n 0). Из фиг. 2 следует, что почти весь диапазон регулирования скорости реализуется при действующих токах, превышающих номинальное значение Iн. Снижение скорости и превышение действующего значения тока по сравнению с его номинальным значением обуславливают неблагоприятные условия нагрева двигателя. Поэтому использование способа целесообразно только при повторно-кратковременных режимах работы. Предлагаемый способ весьма просто реализуется и имеет высокие технико-экономические показатели.

Claims (1)

  1. Способ регулирования скорости асинхронных электродвигателей путем изменения длительности подключения двигателя к источнику питания на периоде подключения, отличающийся тем, что одновременно с изменением длительности подключения двигателя к источнику питания регулируют период подключения, причем максимальное значение периода подключения не превышает четырех значений электромагнитной постоянной времени двигателя.
RU96104124A 1996-02-29 1996-02-29 Способ регулирования скорости асинхронных электродвигателей RU2094940C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96104124A RU2094940C1 (ru) 1996-02-29 1996-02-29 Способ регулирования скорости асинхронных электродвигателей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96104124A RU2094940C1 (ru) 1996-02-29 1996-02-29 Способ регулирования скорости асинхронных электродвигателей

Publications (2)

Publication Number Publication Date
RU2094940C1 true RU2094940C1 (ru) 1997-10-27
RU96104124A RU96104124A (ru) 1997-11-27

Family

ID=20177608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96104124A RU2094940C1 (ru) 1996-02-29 1996-02-29 Способ регулирования скорости асинхронных электродвигателей

Country Status (1)

Country Link
RU (1) RU2094940C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Пиотровский Л.М. Электрические машины. - М.: Госэнергоиздат, 1950, с.465. 2. Андреев В.П., Сабинин Ю.А. Основы электропривода. - М.-Л.: Госэнергоиздат, 1963, с.615. *

Similar Documents

Publication Publication Date Title
US4706180A (en) Pulse width modulated inverter system for driving single phase a-c induction motor
US6051952A (en) Electric motor speed and direction controller and method
CA2549055C (en) Method of rotating a polyphase motor at less than rated speed
US5969498A (en) Induction motor controller
JPH0851790A (ja) 誘導性負荷用制御回路
KR20020093030A (ko) 전기기기 전원장치
CA2140065C (en) Solid state motor speed control
KR100187211B1 (ko) 단상 유도전동기의 속도 조절장치
US5446361A (en) Circuit arrangement for powering a two-phase asynchronous motor
Materu et al. Steady-state analysis of the variable-speed switched-reluctance motor drive
JPWO2014115498A1 (ja) 電力変換装置、電力変換方法、モータシステム
EP0697764B1 (en) Voltage, phase and frequency control by miniature inverter system
US5793169A (en) Method and apparatus for controlling static electronic components for phase switching in a three-phase brushless electric motor
US5986440A (en) Load power control method using a phase control system, and device therefor
RU2094940C1 (ru) Способ регулирования скорости асинхронных электродвигателей
US6140795A (en) Variable speed control for AC induction motors
KR20050043907A (ko) 위상을 제어하여 전력을 제어하기 위한 장치 및 고조파를저감하기 위한 방법
US6472844B2 (en) Single-phased powered drive system
KR20030020288A (ko) 전자식으로 정류된 직류 모터 제어 방법
US4426609A (en) Power factor controller
EP0627809A2 (en) Method of operating an inverter for powering an induction motor
RU2199815C2 (ru) Способ регулирования скорости асинхронного электродвигателя
JP2639985B2 (ja) 単相誘導電動機の制御方法
Ayyildiz et al. Soft starter circuit design for single phase squirrel cage induction motor
US11916497B2 (en) Variable-speed drive for single-phase asynchronous motors