RU2086034C1 - Термоэмиссионный электрогенерирующий элемент - Google Patents

Термоэмиссионный электрогенерирующий элемент Download PDF

Info

Publication number
RU2086034C1
RU2086034C1 RU95113933A RU95113933A RU2086034C1 RU 2086034 C1 RU2086034 C1 RU 2086034C1 RU 95113933 A RU95113933 A RU 95113933A RU 95113933 A RU95113933 A RU 95113933A RU 2086034 C1 RU2086034 C1 RU 2086034C1
Authority
RU
Russia
Prior art keywords
emitter
heat pipe
lithium
ege
element according
Prior art date
Application number
RU95113933A
Other languages
English (en)
Other versions
RU95113933A (ru
Inventor
Виктор Васильевич Синявский
Владимир Давидович Юдицкий
Original Assignee
Виктор Васильевич Синявский
Владимир Давидович Юдицкий
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Васильевич Синявский, Владимир Давидович Юдицкий filed Critical Виктор Васильевич Синявский
Priority to RU95113933A priority Critical patent/RU2086034C1/ru
Application granted granted Critical
Publication of RU2086034C1 publication Critical patent/RU2086034C1/ru
Publication of RU95113933A publication Critical patent/RU95113933A/ru

Links

Images

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Назначение: энергетика, ядерная техника и непосредственное преобразование тепловой энергии в электрическую с помощью термоэмиссионного реактора-преобразователя. Сущность изобретения: для выравнивания температурного поля эмиттера между ним и торцевым блоком размещена тепловая труба (ТТ) с продольно-радиальным переносом тепла. ТТ выполнена в виде двухстенной оболочки с капиллярной структурой, размещенной у внутренней и внешней стенок оболочек и поперек стенок в виде радиальных пластин с отверстиями. В качестве рабочего тела ТТ выбран литий, преимущественно изотоп литий-7. В качестве материала ТТ выбран вольфрам или его сплавы. Капиллярная структура выполнена в виде не менее чем одного слоя сетки или перфорированного экрана. 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к энергетике, ядерной технике и непосредственному преобразованию тепловой энергии в электрическую и может быть использовано при создании электрогенерирующих сборок термоэмиссионного реактора-преобразователя (ТРП).
Термоэмиссионный электрогенерирующий элемент (ЭГЭ) представляет собой элементарную ячейку ТРП, так как в ЭГЭ происходит весь цикл от генерации тепла при делении ядер урана до преобразования части второго тепла непосредственно в электричество. Последовательно-скоммутированные ЭГЭ образуют электрогенерирующую сборку (ЭГЭ)-сборочную единицу ТРП.
Известно несколько конструкционных схема ЭГЭ. Наиболее распространена коаксиальная схем ЭГЭ, разрабатывается схема с внешним расположением горючего, были созданы и испытаны ЭГЭ с плоскоцилиндрической геометрией электродов.
Наиболее близким к изобретению по технической сущности является ЭГЭ для ТРН "Топаз". Он содержит топливный сердечник из диоксида урана, размещенный внутри эмиттерной оболочки, цилиндрическая часть которой является эмиттером, коллектор, коллекторную изоляцию и наружный чехол. ЭГЭ содержит также систему дистанционаторов, обеспечивающих поддержание межэлектродного зазора, и коммутационную перемычку, с помощью которой эмиттер ЭГЭ электрически коммутируется с коллектором соседнего ЭГЭ. Последовательно соединенные ЭГЭ образуют ЭГС, из которых собирается активная зона ТРП.
В рассматриваемом ЭГЭ наблюдается существенная неизотермичность эмиттера, связанная с утечками тепла через коммутационную перемычку. Неизотермичность эмиттера может достигать 200oC более и распространяется на значительную часть длины ЭГЭ. В результате эффективность преобразования энергии в ЭГЭ снижается, так как при ограничении максимальной температуры эмиттера снижение температуры приводит к снижению как плотности генерируемого тока так и КПД преобразования, который заметно снижается с уменьшением плотности генерируемой мощности. В результате необходимости выполнены условия:
TЕ max ≅ TЕ доп, (1)
где
TE макс, TE доп максимальное и допустимое значения температуры эмиттера, эффективность работы эмиттера может снижаться в 1,5-2 раза.
Техническим результатом, достигаемым при использовании изобретения, является повышение эффективности использования эмиттерной поверхности как с точки зрения увеличения средней плотности электрической мощности при заданном TЕ доп, так и повышение ресурса за счет повышения изотермичности эмиттера.
Указанный технический результат достигается в термоэмиссионном ЭГЭ, содержащем блок делящегося вещества, размещенный внутри эмиттерной оболочки, цилиндрическая часть которой является эмиттером, в котором между эмиттером и топливным блоком установлена тепловая труба с радиально-продольной передачей тепла. В качестве рабочего тела такой тепловой трубы (TT) может быть выбран литий, а еще лучше обогащенный по изотопу литий-7. В качестве фитильной структуры такой TT можно использовать сетку и перфорированные радиальные паровые каналы. В качестве материала TT может быть выбран молибден, вольфрам или их сплавы.
На чертеже приведена схема термоэмиссионного ЭГЭ, содержащего топливный сердечник 1, эмиттерную оболочку, состоящую из эмиттера 2 и двух торцевых крышек 3 и 4. Между сердечником 1 и эмиттером 2 вдоль всей длины эмиттера размещена тепловая труба 5, которая содержит герметичный корпус 6 и капиллярную структуру в виде двух частей части 7 для поперечной радиальной перетечки теплоносителя и части 8 для продольной перетечки жидкого теплоносителя. Паровой объем TT 5 образован также поперечными каналами 9 и продольными каналами 10, ЭГЭ содержит также коллектор 11, коллекторную изоляцию 12 и наружную трубку (чехол) 13. Для электрической коммутации ЭГ и ЭГС предусмотрена коммутационная перемычка 14, снабженная отверстиями 15 для прохода пара цезия в межэлектродные зазоры 16.
Термоэмиссионный ЭГЭ работает следующим образом.
После изготовления эмиттера 2 с донышком 4 внутрь вставляется тепловая труба 5, которая предварительно была отвакуумирована, обезгажена и заполнена теплоносителем, например, литием. Внутрь тепловой трубы, выполненной в виде цилиндрической оболочки, вставляется топливный сердечник 1, например, в виде таблеток из диоксида или карбида урана. После этого к торцу эмиттера 2 приваривается вторая торцевая крышка 3 с коммутационной перемычкой 14. Сварной герметичный шок 17 шлифуется. Последовательно коммутируя внутри чехла 13 через слой изоляции 12 отделенные ЭГЭ образуют ЭГС. Набранная из таких ЭГС активная зона ТРП готова к работе. При появлении с помощью органов регулирования положительной реактивности в топливном сердечнике 1 за счет деления ядер урана выделяется тепло, которое теплопроводностью доставляется к внутренней части корпуса 6 ТТ. Это тепло испаряет жидкое рабочее тело, например литий, которое заполняет капиллярную структуру 7 и 8 ТТ 5. Пар проходит в паровом канале 9 и конденсируется на капиллярной структуре 8 у наружной стенки корпуса 4 ТТ 5. Далее с этой стенки тепло передается на эмиттер 2. Часть этой тепловой мощности в межэлектродном зазоре 16, заполненном паром цезия, преобразуется в электроэнергию, которая с помощью коммутационной перемычки 14 суммируется с вырабатываемыми другими ЭГЭ электроэнергией и отводится потребителю. Непреобразованная часть тепла термодинамического цикла поступает на коллектор 11 и далее теплопроводностью передается через коллекторную изоляцию 12 чехлу 13,с которого тепло уносится теплоносителем.
Из-за наличия металлической коммутационной перемычки 14 часть поступившего на эмиттер 2 тепла теплопроводностью через перемычку 14 переносится на коллектор 11. В результате вдоль эмиттера 2 образуется градиент температуры с понижением у края, примыкающего к торцевой крышке 3. В результате в ТТ 5 кроме радиального переноса тепла в паровых каналах 9 происходит продольный перенос тепла в результате испарения жидкой фазы рабочего тела в более нагретой части, например, вблизи крышки 4, переноса пара по паровым продольным каналам 10 и конденсации пара в более холодных частях ТТ, например, вблизи крышки 3. Сконденсировавшаяся жидкая фаза рабочего тела по капиллярной структуре 8 возвращается в более нагретую часть, где снова испаряется.
В результате происходит продольное выравнивание температур вдоль ТТ 5, а следовательно, и эмиттера 2. Известно, что в правильно спроектированных ТТ градиент температур может быть ничтожен (менее 1oC), а следовательно, в предложенной конструкции ЭГЭ может быть обеспечено практически полное выравнивание температуры эмиттера. На фиг.2 показано температурное поле типичного ЭГЭ в виде зависимости температуры эмиттера TЕ от координаты Z, причем Z O соответствует краю эмиттера 2 у крышки 4, a 1 соответствует краю эмиттера 2 у крышки 3 с коммутационной перемычкой 14. Здесь кривая "a" относится к ЭГЭ без ТТ, а кривая "b" к предложенному ЭГЭ с ТТ При одинаковых TЕ макс в предложенной ЭГЭ с температуры полем, соответствующим кривой "b", генерируемая мощность, почти в 2 раза выше, чем в типичном ЭГЭ с температурным полем по кривой "a". Выравнивание температуры эмиттера позволяет повысить тепловую мощность ЭГЭ, а следовательно, и эффективность, при выполнении условия (1). Возможно повышение эффективности и при сохранении неизменной тепловой мощности ЭГЭ, в этом случае выравнивание температуры эмиттера приведет к снижению TЕ макс, а следовательно, и увеличению ресурса при сохранении генерируемой электрической мощности. Температурное поле эмиттера в этом случае демонстрирует кривая "c" фиг.2.
На фиг. 1 изображена традиционная схема коаксиального ЭГЭ с внутренним расположением топливного блока в виде топливного сердечника. Предложенный ЭГЭ может быть выполнен и по схеме с внешним расположением топливного блока в виде шетигранника с внутренним отверстием.
В качестве рабочего тела ТТ целесообразно использовать литий как оптимальное рабочее тело, начиная с температур, примерно 550K. Так как ЭГЭ размещен в активной зоне ТРП, целесообразное использовать изотоп литий-7 или естественную смесь изотопов, обогащенную по литию-7. В качестве материала как оболочек так и капиллярной структуры ТТ целесообразно использовать молибден, вольфрам или их сплавы, а для улучшения нейтроннофизических характеристик ТРП из таких ЭГЭ-изотоп вольфрама-184 с относительно небольшим сечением тепловых нейтронов.

Claims (7)

1. Термоэмиссионный электрогенерирующий элемент, содержащий топливный блок из делящегося материала, размещенный внутри эмиттерной оболочки, цилиндрическая часть которой является эмиттером, отличающийся тем, что между эмиттером и топливным блоком установлена тепловая труба с радиально-продольной передачей тепла.
2. Элемент по п.1, отличающийся тем, что тепловая труба выполнена в виде цилиндрической двухстенной оболочки с капиллярной структурой, размещенной у внутренней и внешней стенок оболочки и поперек стенок в виде радиальных пластин, снабженных отверстиями.
3. Элемент по пп.1 и 2, отличающийся тем, что в качестве рабочего тела тепловой трубы выбран литий.
4. Элемент по п.3, отличающийся тем, что в качестве лития выбран изотоп лития-7 или естественная смесь изотопов лития, обогащенная по изотопу литий-7.
5. Элемент по пп.1 4, отличающийся тем, что в качестве материала оболочки и капиллярной структуры тепловой трубы выбран вольфрам или его сплавы.
6. Элемент по п. 5, отличающийся тем, что в качестве вольфрама выбран изотоп вольфрама-184.
7. Элемент по пп.1 6, отличающийся тем, что в качестве капиллярной структуры использовано не менее одного слоя сетки или перфорированного экрана.
RU95113933A 1995-08-02 1995-08-02 Термоэмиссионный электрогенерирующий элемент RU2086034C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95113933A RU2086034C1 (ru) 1995-08-02 1995-08-02 Термоэмиссионный электрогенерирующий элемент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95113933A RU2086034C1 (ru) 1995-08-02 1995-08-02 Термоэмиссионный электрогенерирующий элемент

Publications (2)

Publication Number Publication Date
RU2086034C1 true RU2086034C1 (ru) 1997-07-27
RU95113933A RU95113933A (ru) 1997-08-10

Family

ID=20170968

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95113933A RU2086034C1 (ru) 1995-08-02 1995-08-02 Термоэмиссионный электрогенерирующий элемент

Country Status (1)

Country Link
RU (1) RU2086034C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Синявский В.В. и др. Проектироване и испытания термоэмиссионных твэлов.- М.: Атомиздат, 1981, с. 19 - 20. Там же, с. 20 - 21. *

Similar Documents

Publication Publication Date Title
RU2159479C2 (ru) Термоэмиссионный ядерный реактор
US4042757A (en) Thermo-electric generators
US3093567A (en) Nuclear device for generating electric power
US3601638A (en) Fuel elements for use in thermionic nuclear reactors
US5353321A (en) Plasma thermoelement
RU2086034C1 (ru) Термоэмиссионный электрогенерирующий элемент
RU2390872C1 (ru) Термоэмиссионный преобразователь
US3330974A (en) Power generation apparatus
JPH10132994A (ja) 熱電発電用黒鉛減速型原子炉
US3578991A (en) Thermionic converter with concentric collector and emitter
RU2185002C2 (ru) Термоэмиссионный электрогенерирующий элемент
US3321646A (en) Thermoelectric cell and reactor
US3439193A (en) Nuclear reactor with thermionic converter array
RU2165656C1 (ru) Термоэмиссионный реактор-преобразователь
RU2724919C1 (ru) Реактор-преобразователь
JP2003130976A (ja) 核融合反応装置
US3623947A (en) Nuclear reactor and thermionic converter cells therefor
RU2191442C2 (ru) Термоэмиссионная электрогенерирующая сборка
US3917509A (en) Thermionic nuclear reactor with internal heat distribution and multiple duct cooling
RU2160481C1 (ru) Термоэмиссионная электрогенерирующая сборка с плоскоцилиндрической конфигурацией электродов
RU2070752C1 (ru) Плоскоцилиндрический термоэмиссионный электрогенерирующий элемент
US3590286A (en) Thermionic converter cells for nuclear reactor
US3551708A (en) Heat shielded thermionic converter
US3218487A (en) High temperature thermionic generator
RU2151440C1 (ru) Термоэмиссионная электрогенерирующая сборка