RU2085536C1 - Состав для изготовления керамического материала с высокой коррозионной стойкостью - Google Patents
Состав для изготовления керамического материала с высокой коррозионной стойкостью Download PDFInfo
- Publication number
- RU2085536C1 RU2085536C1 RU92010575A RU92010575A RU2085536C1 RU 2085536 C1 RU2085536 C1 RU 2085536C1 RU 92010575 A RU92010575 A RU 92010575A RU 92010575 A RU92010575 A RU 92010575A RU 2085536 C1 RU2085536 C1 RU 2085536C1
- Authority
- RU
- Russia
- Prior art keywords
- composition
- celsian
- clay
- samples
- ceramic material
- Prior art date
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Использование: в производстве фильтров, носителей катализаторов, а также элементов теплозащиты в металлургии, химической промышленности и машиностроении. Сущность изобретения: состав включает следующие компоненты в мас.%: цельзиан 15-35, глинистый компонент (глина и каолин) 32,5-42,5, кварцевый песок 15,6-20,4, полевой шпат 11,5-15,5 и бой фарфоровых изделий 5-7. Состав обеспечивает получение высокопористых изделий с хорошей прочностью и отличной коррозионной стойкостью в растворах кислот и щелочей. 2 ил., 2 табл.
Description
Изобретение относится к изготовлению пористых керамических изделий и может быть использовано при получении фильтров, носителей катализаторов, а также элементов теплозащиты в металлургии, химической промышленности и машиностроении.
Высокопористые керамические материалы, используемые в фильтрации и в катализе, наиболее часто получают методами дублирования полимерной матрицы или экструзии. Эти материалы характеризуются такими ценными эксплуатационными характеристиками, как легкость, удовлетворительная прочность, высокая проницаемость для жидкостей и газов. В процессе эксплуатации фильтры и носители катализаторов подвергаются воздействиям, иногда весьма резким, различных температур, поэтому тонкие стенки перемычек или сот должны обладать достаточной термостойкостью. Кроме того, значительная поверхность контакта с атмосферой активизирует не только процессы фазообразования при спекании, но также и процессы деструкции и агрессивных средах.
Наиболее дешевым и доступным сырьем для керамических материалов являются природные алюмосиликаты и силикаты, издавна используемые в производстве фаянса и фарфора. Так, в состав электротехнического фарфора входят 40-50% глинистого вещества в виде каолина и глины, 20-40% кварца и 20-28% полевого шпата, пегматита или нефелинового сиенита [1]
К числу недостатков обычного фарфора следует отнести достаточно высокий температурный коэффициент линейного расширения (ТКЛР), а также низкую щелочестойкость [2]
ТКЛР материала может быть существенно снижен введением добавок с низким ТКЛР. Так, известным и наиболее близким к предлагаемому техническому решению является состав для изготовления термостойкого фарфора, содержащий 5-20% петалита, 25-33% глинистого компонента, 15-20% кварцевого песка, 20-25% щелочесодержащего компонента (полевого шпата, пегматита), 2-6% талька, доломита или известняка 5-13% фарфорового боя и 1-5% поливинилового спирта [3] Состав обеспечивает получение термостойких пористых фарфоровых изделий с высокой механической прочностью.
К числу недостатков обычного фарфора следует отнести достаточно высокий температурный коэффициент линейного расширения (ТКЛР), а также низкую щелочестойкость [2]
ТКЛР материала может быть существенно снижен введением добавок с низким ТКЛР. Так, известным и наиболее близким к предлагаемому техническому решению является состав для изготовления термостойкого фарфора, содержащий 5-20% петалита, 25-33% глинистого компонента, 15-20% кварцевого песка, 20-25% щелочесодержащего компонента (полевого шпата, пегматита), 2-6% талька, доломита или известняка 5-13% фарфорового боя и 1-5% поливинилового спирта [3] Состав обеспечивает получение термостойких пористых фарфоровых изделий с высокой механической прочностью.
Недостатком известного состава является низкая даже по сравнению с обычным электрофарфоровым составом коррозионная стойкость.
Предлагаемый состав для изготовления высокопористых керамических изделий содержит в качестве термостойкой добавки цельзиан при следующем соотношении компонентов, мас.
Цельзиан 15-35
Глинистый компонент (каолин + глина) 32,5-42,5
Кварцевый песок 15,6-20,4
Полевой шпат 11,5-15,5
Бой фарфоровых изделий 5-7.
Глинистый компонент (каолин + глина) 32,5-42,5
Кварцевый песок 15,6-20,4
Полевой шпат 11,5-15,5
Бой фарфоровых изделий 5-7.
Предлагаемый состав обладает высокими эксплуатационными характеристиками за счет хорошей термостойкости и повышенной коррозионной стойкости.
Цельзиан BaO•Al2O3•2SiO2 минерал из группы полевых шпатов, отличающийся высокой степенью изоморфизма с калиевым полевым шпатом (ортоклазом) и образующий с ним ряд твердых растворов (Эйтель В. Физическая химия силикатов. Чикаго: 1954: Пер. с англ. М. Изд-во иностр. литературы, 1962. 1055 с.). Температура плавления цельзиана 1740oC. При 1311±4oC с кварцем наблюдается эвтектика, в состав которой входят 51% цельзиана и 49% кварца [4]
Таким образом, цельзиан, имеющий ТКЛР 2,1-2,2 град-1 (при температуре 20-100oC) и хорошую совместимость с компонентами фарфоровой шихты, может быть использован в качестве добавки при получении термостойких материалов.
Таким образом, цельзиан, имеющий ТКЛР 2,1-2,2 град-1 (при температуре 20-100oC) и хорошую совместимость с компонентами фарфоровой шихты, может быть использован в качестве добавки при получении термостойких материалов.
Промышленные месторождения цельзиана в мире отсутствуют, возможно этим объясняется относительно малое распространение цельзиансодержащих материалов. Температура синтеза цельзиана из чистых оксидов в стехиометрических соотношениях 1500-1600oC. Из природных соединений глин, каолинов и карбоната бария цельзиан может быть синтезирован и при более низкой температуре [5] При этом, правда, не решены проблемы ликвидации влияния полиморфизма цельзиана на свойства продукта.
Необходимость предварительного синтеза цельзиана существенно усложняет технологию и повышает стоимость изделий, поэтому нецелесообразно изготавливать материалы только из цельзиана или с высоким его содержанием. Количество цельзиана должно быть оптимизировано на минимальном уровне. Этим требованиям отвечает введение в состав исходной шихты 15-35% цельзиана. Уменьшение содержания цельзиана не позволяет получить термостойкие образцы, а увеличение содержания цельзиана до 40% и более нежелательно, так как при этом цельзиан из добавки переходит в преобладающую фазу, изменяя свойства материала.
На фиг.1 изображены фрагменты дифрактограмм спеченных материалов с добавками 10% (а), 20% (б), 30% (в) и 40% (г) цельзиана; на фиг.2 график зависимости потери прочности после 10 термоциклов воздух 900oC воздух высокопористых спеченных образцов от содержания цельзиана в составе исходной шихты.
Введение 10% цельзиана в электрофарфоровую массу не оказывает существенного влияния на дифрактограмму материала. Четко очерчены пики α-кварца и муллита, заметно гало стеклофазы, линии цельзиана не обнаруживаются. При введении 20% и 30% цельзиана картина существенно не изменяется, лишь повышается содержание стеклофазы и уменьшается интенсивность пиков кристаллических веществ. При 40% цельзиана наблюдается резкая смена внешнего вида дифрактограммы, на фоне очень слабых линий a -кварца и муллита четко проявляются линии цельзиана.
Следовательно, при содержании цельзиана менее 40% он практически полностью входит в состав стеклофазы материала, улучшая ее прочность и коррозионную стойкость, так как известно, что именно к таким результатам приводит насыщение стеклофазы ионами бария и алюминия [2] При содержании цельзиана свыше 35% (40% и более) цельзиан выкристаллизовывается из состава стеклофазы, ее состав вновь становится похож на стеклофазу обычного электрофарфора, и соответственно снижается коррозионная стойкость. Термостойкость материала также ухудшается, вновь возрастая при дальнейшем повышении содержания цельзиана (фиг.2).
Таким образом, при содержании цельзиана менее 15% не удается обеспечить термостойкость материала, а свыше 35% не только повышается стоимость материала из-за введения большого количества предварительно синтезированного цельзиана, но также изменяется фазовый состав материала.
Указанные границы носят несколько условный характер, так как изменение термостойкости и фазового состава происходит плавно и разницу между 15% и 14% цельзиана в материале четко зафиксировать практически невозможно. Реально может быть отмечено различие между 10% и 20% цельзиана.
Содержание остальных компонентов шихты варьируется в зависимости от содержания цельзиана. При этом глинистые компоненты и кварцевый песок являются основой материала, регулируя содержание оксидов кремния и алюминия, а полевой шпат способствует образованию стеклофазы и позволяет сохранить на оптимальном уровне 2-3 соотношение K2O/Na2O [6]
Предложенное техническое решение иллюстрируется следующими примерами конкретного выполнения.
Предложенное техническое решение иллюстрируется следующими примерами конкретного выполнения.
Отдельные компоненты тщательно размалывали до среднего размера частиц 1-5 мкм и перемешивали в соотношениях, приведенных в табл.1. Содержание оксидов в различных составах рассчитано по оксидному составу сырьевых материалов, анализ которых производился в ЦЗЛ Пермского завода высоковольтных электроизоляторов.
Для испытаний на коррозионную стойкость были изготовлены также образцы из кордиеритовой массы, основными компонентами которой являются тальк, каолин и глинозем, а также из ультрафарфоровой массы УФ-46 и электрофарфоровой массы.
Подготовленную шихту высушивали, просеивали и использовали в качестве дисперсной фазы в 3-5%-ный водный раствор поливинилового спирта. Шликером пропитывали заготовки полиуретановой пены со средним диаметром ячейки 2,5-3,0 мм размером 30х30х30 мм. Заготовки, пропитанные шликером, высушивали и обжигали при 1300-1370oC для удаления органической пены и упрочнения сетчато-ячеистого каркаса.
Полученные образцы плотностью 0,35-0,40 г/см3 испытывали на прочность при сжатии на разрывной машине 2054 Р-5, термоциклировали в муфельной печи, охлаждая на воздухе. Коррозионную стойкость оценивали по потере массы образцов после выдержки в течение 5 суток в растворах агрессивных реагентов. Значительная поверхность контакта высокопористых образцов с окружающей средой позволяла проводить определение потери массы без предварительного разрушения образцов.
Как видно из графика зависимости потери прочности от содержания цельзиана в исходной шихте (фиг.1) при введении цельзиана в предлагаемых пределах потери прочности составляют не более 10% Потеря прочности для аналогичных образцов, приготовленных из обычного фарфорового состава, около 30% Интересно, что при введении 40% цельзиана термостойкость материала падает и вновь увеличивается при дальнейшем возрастании количеств цельзиана. Таким образом, данные по термостойкости подтверждают результаты рентгеноструктурного анализа, указывающего на изменение фазового состава (а следовательно и свойств материала) при введении 40% цельзиана.
У образцов из состава-прототипа потеря прочности после 10 термоциклов меньше, чем у предлагаемого состава и равняется 0-5% от первоначальной прочности, т.е. образцы из состава-прототипа несколько более термостойки.
Прочность при сжатии образцов из предлагаемого состава существенно не отличается от прочности при сжатии образцов из состава-прототипа, а также от прочности образцов из других алюмосиликатных составов, полученных методом дублирования полимерной матрицы [7] и составляет в зависимости от среднего диаметра ячейки и плотности материала 0,5-3,5 МПа.
Сравнение коррозионной стойкости различных образцов представлено в табл. 2.
Данные табл. 2 подтверждают, что предлагаемый состав обладает наибольшей коррозионной стойкостью даже по сравнению с кордиеритом. Наименьшей коррозионной стойкостью характеризуются образцы из состава-прототипа. При этом кристаллические фазы спеченных образцов предлагаемого состава и прототипа одинаковы, что указывает на преимущественное влияние стеклофазы на поведение этих материалов в агрессивных реагентах.
Таким образом, предлагаемый состав может быть использован для получения высокопористых изделий с хорошей прочностью и термостойкостью и отличной коррозионной стойкостью в растворах кислот и щелочей. Изделия могут быть сформированы любым из методов получения высокопористых материалов. Из предлагаемого состава могут быть также получены компактные материалы.
Полученные высокопористые изделия могут быть использованы в качестве фильтров и носителей катализаторов, работающих в условиях агрессивных сред и перепада температур. Применение относительно дешевого и доступного природного сырья позволяет снизить производственные затраты.
Claims (1)
- Состав для изготовления керамического материала с высокой коррозионной стойкостью, включающий глинистый компонент, кварцевый песок, полевой шпат, бой фарфоровых изделий, отличающийся тем, что он дополнительно содержит цельзиан при следующем соотношении компонентов, мас.Глинистый компонент (глина и каолин) 32,5 42,5
Кварцевый песок 15,6 20,4
Полевой шпат 11,5 15,5
Бой фарфоровых изделий 5 7
Цельзиан 15 35е
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU92010575A RU2085536C1 (ru) | 1992-12-08 | 1992-12-08 | Состав для изготовления керамического материала с высокой коррозионной стойкостью |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU92010575A RU2085536C1 (ru) | 1992-12-08 | 1992-12-08 | Состав для изготовления керамического материала с высокой коррозионной стойкостью |
Publications (2)
Publication Number | Publication Date |
---|---|
RU92010575A RU92010575A (ru) | 1995-02-20 |
RU2085536C1 true RU2085536C1 (ru) | 1997-07-27 |
Family
ID=20133253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU92010575A RU2085536C1 (ru) | 1992-12-08 | 1992-12-08 | Состав для изготовления керамического материала с высокой коррозионной стойкостью |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2085536C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2473506C1 (ru) * | 2011-05-13 | 2013-01-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный экономический университет" (ГОУ ВПО УрГЭУ) | Шихта для изготовления керамической плитки |
RU2481301C1 (ru) * | 2012-01-12 | 2013-05-10 | Юлия Алексеевна Щепочкина | Керамическая масса для изготовления облицовочной плитки |
RU2602547C2 (ru) * | 2015-03-10 | 2016-11-20 | Геннадий Леонидович Багич | Способ изготовления термостойкого картриджа. |
RU2652009C1 (ru) * | 2017-07-11 | 2018-04-24 | Юлия Алексеевна Щепочкина | Керамическая масса |
-
1992
- 1992-12-08 RU RU92010575A patent/RU2085536C1/ru active
Non-Patent Citations (1)
Title |
---|
1. Августиник А.И. Керамика. - Л.: Стройиздат, 1975, с.592. 2. Бабич В.Ф. и др. Химическое оборудование из керамики. - М.: Машиностроение, 1987, с.224. 3. Авторское свидетельство СССР N 1604796, кл. C 04 B 33/24, 1990. 4. Торопов Н.А. Диаграммы состояния силикатных систем. Справочник. - Л.: Наука, 1972, с.448. 5. Патент Бельгии N 24459, кл. C 04 B 33/00, 1978. 6. Будников П.П. и др. Химическая технология керамики и огнеупоров. - М.: Стройиздат, 1972, с. 551. 7. Анциферов В.Н. и др. Высокопористые керамические материалы. Стекло и керамика.- 1986, N 9, с.19 и 20. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2473506C1 (ru) * | 2011-05-13 | 2013-01-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный экономический университет" (ГОУ ВПО УрГЭУ) | Шихта для изготовления керамической плитки |
RU2481301C1 (ru) * | 2012-01-12 | 2013-05-10 | Юлия Алексеевна Щепочкина | Керамическая масса для изготовления облицовочной плитки |
RU2602547C2 (ru) * | 2015-03-10 | 2016-11-20 | Геннадий Леонидович Багич | Способ изготовления термостойкого картриджа. |
RU2652009C1 (ru) * | 2017-07-11 | 2018-04-24 | Юлия Алексеевна Щепочкина | Керамическая масса |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4063955A (en) | Low thermal expansion ceramics of cordierite solid solution and method for producing same | |
US4194917A (en) | Fired ceramic having dense and low thermal expansion characteristics | |
RU2004123456A (ru) | Стойкое к воздействию высокой температуры стекловидное неорганическое волокно | |
JPS6366777B2 (ru) | ||
JPS649266B2 (ru) | ||
RU2009138527A (ru) | Огнеупор для элемента насадки регенератора стеклоплавильной печи | |
RU2085536C1 (ru) | Состав для изготовления керамического материала с высокой коррозионной стойкостью | |
US4421699A (en) | Method for producing a cordierite body | |
EP0845446A1 (en) | Corrosion resistant ceramic bodies | |
JPH0582343B2 (ru) | ||
JPH013067A (ja) | コージェライトハニカム構造体の製造方法 | |
RU2101259C1 (ru) | Состав для изготовления пористого проницаемого керамического материала с высокой термостойкостью | |
WO1998021162A1 (en) | An insulating refractory type material and a method of making such a material | |
US4434239A (en) | Process for manufacturing cordierite compositions | |
Eldera et al. | Negative thermal expansion in porous glass-ceramics based on Mg 2 Al 2 B 2 Si 5 O 18 prepared from Saudi raw materials | |
GB2147287A (en) | Alkali-resistant refractory compositions | |
RU2291133C2 (ru) | Применение огнеупора на основе магнезита и диоксида циркония в регенераторах ванных стекловаренных печей | |
RU2494995C2 (ru) | Шихта для получения кордиеритовой керамики | |
Elmer | Selective leaching of extruded cordierite honeycomb structures | |
Khomenko et al. | Low-temperature cordierite ceramics with porous structure for thermal shock resistance products | |
Kichkailo et al. | Lithium-bearing heat-resistant ceramics (a review) | |
SU1353759A1 (ru) | Шихта дл изготовлени керамического материала | |
SU1567549A1 (ru) | Сырьева смесь дл изготовлени керамических изделий | |
Hamzawy et al. | Fabrication of Sr-feldspar/cordierite and Sr-feldspar/Sr-osumilite composites through sintering of Mg–Sr-cordierite and borosilicate glass for electronic applications | |
Zirczy | Kinetics of cordierite formation. |