RU2079961C1 - Устройство для управления электроприводом с фрикционной нагрузкой - Google Patents

Устройство для управления электроприводом с фрикционной нагрузкой Download PDF

Info

Publication number
RU2079961C1
RU2079961C1 RU92003086A RU92003086A RU2079961C1 RU 2079961 C1 RU2079961 C1 RU 2079961C1 RU 92003086 A RU92003086 A RU 92003086A RU 92003086 A RU92003086 A RU 92003086A RU 2079961 C1 RU2079961 C1 RU 2079961C1
Authority
RU
Russia
Prior art keywords
output
input
speed
connect
electric drive
Prior art date
Application number
RU92003086A
Other languages
English (en)
Other versions
RU92003086A (ru
Inventor
Алевтина Анатольевна Малафеева
Original Assignee
Алевтина Анатольевна Малафеева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алевтина Анатольевна Малафеева filed Critical Алевтина Анатольевна Малафеева
Priority to RU92003086A priority Critical patent/RU2079961C1/ru
Publication of RU92003086A publication Critical patent/RU92003086A/ru
Application granted granted Critical
Publication of RU2079961C1 publication Critical patent/RU2079961C1/ru

Links

Images

Abstract

Использование: для управления электроприводами постоянного тока с фрикционной нагрузкой. Сущность: устройство для управления электроприводом с фрикционной нагрузкой дополнительно содержит корректирующую нелинейную обратную связь по ускорению, величина которой меняется в зависимости от скорости, что позволяет повысить качество регулирования. 4 ил.

Description

Предлагаемое изобретение относится к области электротехники и может быть использовано для управления электроприводами постоянного тока с фрикционной нагрузкой.
Известны устройства для управления электроприводами с фрикционной нагрузкой, содержащие датчики тока якоря и угловых ускорений электродвигателя и суммирующий усилитель (Яворский В.Н. Макшанов В.И. Ермолин В.Н. Проектирование нелинейных следящих систем. М. Энергия, 1978, с. 16 17. А.с. N 376751 (СССР). Следящая система /Семенов К.Е. и др. Опубл. в БИ 1973, N 17, кл. G 05 B 11/01. А. с. N 601658 (СССР). Система компенсации нагрузки на валу электродвигателя. Новиков В. А. Михальчонок Г.Ф. Осипов Л.Н. Опубл. в БИ 1978, N 13, кл. G 05 B 5/10). Использование этих устройств позволяет осуществить регулирование скорости по возмущающему моменту. Однако при наличии на валу двигателя фрикционной нелинейной нагрузки такие устройства не обеспечивают высокого качества регулирования в широком диапазоне изменений скорости и переменном момента сил трения, что объясняется нелинейной зависимостью момента нагрузки Мс от скорости Ω электродвигателя (фиг. 1). При малых скоростях в электроприводе образуется положительная обратная связь, что ухудшает его устойчивость, а при больших отрицательная, которая снижает быстродействие (см. например, Комлев В.П. Евстигнеева А.А. 0малафеев С.И. Исследование модели электропривода постоянного тока с нагрузкой типа "сухое трение". -Изв. вузов СССР. Приборостроение, 1983, N7 с. 33 36. Андрющенко В.А. Следящие системы автоматизированного сборочного оборудования. Л. Машиностроение, 1979, 246 с.).
Таким образом, недостаток известных устройств состоит в том, что они не обеспечивают высокое качество регулирования в широком диапазоне изменений скорости и переменном моменте сил трения.
Из известных технических решений наиболее близким по технической сущности к предлагаемому является устройство для управления электроприводом с фрикционной нагрузкой, содержащее первый алгебраический сумматор, суммирующий вход которого является входом устройства и предназначен для подключения к задатчику скорости, вычитающий вход предназначен для подключения к датчику скорости, а выход через регулятор скорости подключен к первому суммирующему входу второго алгебраического сумматора, второй суммирующий вход которого предназначен для подключения датчика тока, а выход соединен с регулятором тока, выход которого служит выходом устройства, нелинейный блок типа "сухое трение", выход которого связан с третьим входом второго алгебраического сумматора, и блок логики, первый вход которого соединен с входом устройства, второй вход объединен с вычитающим входом первого алгебраического сумматора, а выход соединен с входом нелинейного блока (а.с. N 1513607 (СССР). Устройство для управления скоростью электропривода с компенсацией момента сухого трения. Басалаев Д.А. Белоруков Г.С. Постников Ю.Б. и др. Опубл. в БИ, 1989, N 37, кл. H 02 P 5/06). В этом устройстве при разгоне двигателя подается напряжение, увеличивающее ток якоря для создания дополнительного момента, равного моменту сухого трения, а при торможении уменьшающее ток якоря на такую же величину, чем достигается компенсация момента сухого трения, обеспечивающая повышение точности управления скоростью электропривода. Известное устройство не обеспечивает высокого качества регулирования при наличии сложной фрикционной нагрузки с переменным моментом сил трения, так как в этом случае при малых скоростях в электроприводе образуется положительная обратная связь по скорости, которая снижает устойчивость привода, а при больших отрицательная, снижающая быстродействие. Если параметры компенсирующей цепи выбраны таким образом, что обеспечивают заданные показатели качества при малых скоростях, то при больших скоростях привод обладает низким быстродействием. Если параметры компенсирующей цепи выбраны так, что обеспечивают заданные показатели качества при больших скоростях, то при малых увеличивается перерегулирование и колебательность в переходных режимах и возможно нарушение устойчивости.
Следовательно, недостаток известного устройства состоит в том, что оно не обеспечивает высокое качество регулирования скорости электропривода в широком диапазоне ее изменения и переменном моменте сил трения.
Цель изобретения повышение качества регулирования скорости электропривода при широком диапазоне ее изменения и переменном моменте сил трения.
Поставленная цель достигается тем, что в известное устройство для управления электроприводом, содержащее первый алгебраический сумматор, суммирующий вход которого является входом устройства и предназначен для подключения к задатчику скорости, а выход через регулятор скорости подключен к первому суммирующему входу второго алгебраического сумматора, второй суммирующий вход которого предназначен для подключения датчика тока, а выход соединен с регулятором тока, выход которого служит выходом устройства, дополнительно введены блок дифференцирования, перемножитель и нелинейный элемент с характеристикой
Figure 00000002

вход которого объединен с входом блока дифференцирования и предназначен для подключения к выходу датчика скорости, а выход подключен к одному из выходов перемножителя, второй вход которого связан с выходом блока дифференцирования, а выход подключен к вычитающему входу второго алгебраического сумматора.
По сравнению с наиболее близким аналогичным решением заявленное техническое решение имеет следующие отличительные признаки:
блок дифференцирования;
перемножитель,
нелинейный элемент с характеристикой
Figure 00000003

Следовательно, заявляемое решение соответствует требованию "новизна".
При реализации предполагаемого изобретения повышается качество регулирования скорости в широком диапазоне ее изменения при переменном моменте сил трения.
Следовательно, заявляемое техническое решение соответствует требованию "положительный эффект".
По каждому отличительному признаку проведен поиск известных технических решений в области электротехники и автоматизированного электропривода.
Известен блок дифференцирования в электроприводе постоянного тока (см. например, Следящие приводы. Под ред. Б.К.Чемоданова, кн. 2 М. Энергия, 1976, с. 27 40). Блоки дифференцирования в известном и предлагаемом приводах предназначены для формирования корректирующих сигналов и выполняют идентичные функции.
Известен перемножитель (а.с. СССР N 1695479, кл. H 02 P 5/06, 1991). В известном устройстве блок перемножения выполняет формирование сигнала, пропорционального мощности, путем умножения сигналов, пропорциональных току и напряжению. В предлагаемом устройстве блок перемножения формирует сигнал, пропорциональный произведению производной от скорости и выходного сигнала нелинейного элемента, т.е. предназначен для изменения величины корректирующего сигнала, пропорционального производной от скорости, в зависимости от скорости электродвигателя.
Нелинейные элементы с характеристикой
Figure 00000004

в известных устройствах аналогично назначения не обнаружены.
Следовательно, заявляемое техническое решение соответствует требованию "существенные отличия".
Сущность предлагаемого изобретения поясняется чертежами. На фиг. 1 приведена функциональная схема устройства для управления электроприводом с фрикционной нагрузкой.
Устройство содержит первый алгебраический сумматор 1, регулятор скорости 2, блок дифференцирования 3, нелинейный элемент 4, второй алгебраический сумматор 5, перемножитель 6, регулятор тока 7. В устройстве для управления электроприводом с фрикционной нагрузкой суммирующий вход первого алгебраического сумматора 1 является входом устройства и предназначен для подключения к задатчику скорости, вычитающий вход предназначен для подключения к датчику скорости, а выход через регулятор скорости 2 подключен к первому суммирующему входу второго алгебраического сумматора 5, второй суммирующий вход которого предназначен для подключения датчика тока, а выход соединен с регулятором тока 7, выход которого служит выходом устройства, вход нелинейного элемента 4 с характеристикой
Figure 00000005

объединен с входом блока дифференцирования 3 и предназначен для подключения к выходу датчика скорости, а выход подключен к одному из входов перемножителя 6, второй вход которого соединен с выходом блока дифференцирования, а выход подключен к вычитающему входу второго алгебраического сумматора.
На фиг. 2 приведена статическая характеристика нелинейного элемента 4. На фиг. 2 показана статическая зависимость момента фрикционной нагрузки от скорости Ω: Mc=Mc(Ω).
Устройство для управления электроприводом с фрикционной нагрузкой работает следующим образом. Ток двигателя измеряется датчиком тока, например шунтом, сигнал Uд.т с выхода которого поступает на вход второго алгебраического сумматора 5. Скорость двигателя измеряется датчиком скорости, например тахогенератором, сигнал Uд.с с выхода которого поступает на вычитающий вход первого алгебраического сумматора 1 и объединенные входы блока дифференцирования 3 и нелинейного элемента 4. Выходной сигнал блока дифференцирования 3, пропорциональный угловому ускорению ротора двигателя
Figure 00000006

где Kс коэффициент передачи датчика скорости;
K3 коэффициент передачи блока дифференцирования 3;
поступает на первый вход перемножителя 6, на втором входе которого действует выходной сигнал нелинейного элемента 4
Figure 00000007

В результате на выходе перемножителя 6 формируется сигнал
Figure 00000008

Следовательно, на вычитающий вход второго алгебраического сумматора 5 с выхода перемножителя 6 поступает сигнал U6, пропорциональный угловому ускорению двигателя, изменяющийся по амплитуде в зависимости от скорости; т.е. большой по амплитуде при малых скоростях
Figure 00000009
и меньшей по амплитуде при больших скоростях.
Фрикционная нагрузка, характеристика которой приведена на фиг. 3, приводит к образованию в электропроводе внутренней обратной связи по скорости (Комлев В. П. Евстигнеева А.А. Малафеев С.И. Исследование модели электропривода постоянного тока с нагрузкой типа "сухое трение". Изв. вузов СССР. Приборостроение, 1983, N 7, с. 33 36). Особенность этой обратной связи состоит в том, что коэффициент этой связи
Figure 00000010

имеет разные знаки при разных скоростях. Это означает, что при малых скоростях обратная связь по скорости, обусловленная фрикционной нагрузкой, положительная, а при больших скоростях отрицательная. Положительная обратная связь по скорости при
Figure 00000011
приводит к потере устойчивости электропривода, а отрицательная при
Figure 00000012
к снижению динамических характеристик системы.
В устройстве для управления электроприводом с фрикционной нагрузкой обеспечивается компенсация внутренней обратной связи по скорости, обусловленной трением как в установившихся, так и в переходных режимах. В установившемся режиме, т. е. при неизменной скорости, в электроприводе действует положительная обратная связь по току, которая пропорциональна статическому моменту нагрузки. Таким образом в электроприводе осуществляется комбинированное регулирование скорости и, следовательно, обеспечивается высокая точность системы. В динамических режимах отрицательная обратная связь по производной от скорости с выхода перемножителя 6 обеспечивает частичную компенсацию нелинейной обратной связи, обусловленной фрикционной нагрузкой. При малых скоростях
Figure 00000013
сильная отрицательная обратная связь по априорно производной от скорости имеет величину
Figure 00000014

и компенсирует внутреннюю положительную обратную связь, образованную нагрузкой, и обеспечивает устойчивую работу электропривода. При
Figure 00000015
сигнал отрицательной обратной связи по производной от скорости
Figure 00000016

имеет небольшую величину и обеспечивает стабилизацию показателей качества регулирования во всем диапазоне изменения скорости.
С целью аналитического доказательства достижения цели изобретения - повышения качества регулирования скорости в широком диапазоне ее изменения при переменном моменте сил трения рассмотрим структурную схему электропривода, показанную на фиг. 4. На схеме обозначено:
Uз управляющее напряжение;
Hc(S) передаточная функция регулятора скорости;
БП блок перемножения;
Hт(S) регулятор тока;
БД блок дифференцирования с передаточной функцией S;
Ki коэффициент передачи датчика тока;
Kу коэффициент передачи усилителя мощности;
F4=F4(Ω) характеристика нелинейного элемента;
r и L активное сопротивление и индуктивность якорной обмотки двигателя;
C конструктивная постоянная двигателя;
KΩ коэффициент передачи датчика скорости;
Mc статический момент нагрузки;
b = β(Ω) коэффициент передачи внутренней обратной связи по скорости, обусловленной трением;
J момент инерции вращающихся механических элементов, приведенных к валу двигателя.
Определим передаточные функции разомкнутого по скорости электропривода по скорости относительно выходного напряжения регулятора скорости и момента нагрузки (т. е. для части электропривода, обведенной пунктиром). При использовании пропорционального регулятора тока, т. е. Hт(S) Kт, они равны соответственно:
Figure 00000017

Figure 00000018

Если коэффициент Ki обратной связи по току выбрать равным
Figure 00000019

то передаточные функции (3) и (4) примут вид:
Figure 00000020

Figure 00000021

где
Figure 00000022
эквивалентная постоянная времени;
Figure 00000023
коэффициент затухания.
Анализ передаточной функции (5) по скорости относительно момента нагрузки показывает, что электропривод представляет собой последовательное соединение позиционного звена второго порядка и дифференцирующего звена. Это означает, что электропривод является инвариантным по отношению к статическому моменту нагрузки, т.е. в установившихся режимах статическая ошибка по моменту равна 0. Характер переходных процессов при изменении управляющего напряжения и момента нагрузки зависит от знаменателя передаточных функций Hи(S) и Hм(S). Так как выделенная пунктиром на фиг. 4 часть электропривода представляет собой в динамическом отношении звено второго порядка, то вид переходных процессов определяется постоянной времени T0 и коэффициентом демпфирования ξ
При изменении скорости постоянная времени T0 const, а коэффициент демпфирования изменяется в зависимости от b(Ω) Для обеспечения постоянного качества регулирования скорости необходимо, чтобы коэффициент демпфирования ξ сохраняя постоянное значение во всем диапазоне регулирования скорости, т.е.
Figure 00000024

Если выбрать с учетом (1) и (2) коэффициенты
Figure 00000025

то коэффициент демпфирования будет постоянным и равным xo во всем диапазоне изменения скорости.
Таким образом, использование в известном устройстве для управления электроприводом с функционной нагрузкой блока дифференцирования, перемножения и нелинейного элемента с характеристикой
Figure 00000026
позволяет повысить качество регулирования скорости в широком диапазоне ее изменения при переменном моменте сил трения.
Использование предлагаемого технического решения в системах автоматизированного электропривода позволит повысить технические характеристики устройств.

Claims (1)

  1. Устройство для управления электроприводом с фрикционной нагрузкой, содержащее первый алгебраический сумматор, суммирующий вход которого является входом устройства и предназначен для подключения к задатчику скорости, вычитающий вход предназначен для подключения к датчику скорости, а выход через регулятор скорости подключен к первому суммирующему входу второго алгебраического сумматора, второй суммирующий вход которого предназначен для подключения датчика тока, а выход соединен с регулятором тока, выход которого служит выходом устройства, отличающееся тем, что в него дополнительно введены блок дифференцирования, перемножитель и нелинейный элемент с характеристикой
    Figure 00000027

    где a и b постоянные коэффициенты, вычисляемые по формулам
    Figure 00000028

    Figure 00000029

    zo заданный коэффициент демпфирования;
    I момент инерции вращающихся механических элементов, приведенный к валу двигателя;
    L индуктивность якорной обмотки двигателя;
    C конструктивная постоянная двигателя;
    Kт,Kу,KΩ- коэффициенты передачи соответственно регулятора тока, усилителя мощности и датчика скорости;
    b1 и β2- коэффициенты передачи внутренней обратной связи по скорости, обусловленной трением для малых и больших скоростей соответственно,
    вход нелинейного элемента объединен с входом блока дифференцирования и предназначен для подключения к выходу датчика скорости, а выход подключен к одному из входов перемножителя, другой вход которого соединен с выходом блока дифференцирования, а выход подключен к вычитающему входу второго алгебраического сумматора.
RU92003086A 1992-10-30 1992-10-30 Устройство для управления электроприводом с фрикционной нагрузкой RU2079961C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92003086A RU2079961C1 (ru) 1992-10-30 1992-10-30 Устройство для управления электроприводом с фрикционной нагрузкой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92003086A RU2079961C1 (ru) 1992-10-30 1992-10-30 Устройство для управления электроприводом с фрикционной нагрузкой

Publications (2)

Publication Number Publication Date
RU92003086A RU92003086A (ru) 1995-08-27
RU2079961C1 true RU2079961C1 (ru) 1997-05-20

Family

ID=20131283

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92003086A RU2079961C1 (ru) 1992-10-30 1992-10-30 Устройство для управления электроприводом с фрикционной нагрузкой

Country Status (1)

Country Link
RU (1) RU2079961C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2628757C1 (ru) * 2016-08-24 2017-08-22 Акционерное общество "Московское конструкторское бюро "Компас" (АО "МКБ "Компас") Способ управления электроприводом и устройство для его реализации (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1513607, кл. H 02 P 5/06, 1989. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2628757C1 (ru) * 2016-08-24 2017-08-22 Акционерное общество "Московское конструкторское бюро "Компас" (АО "МКБ "Компас") Способ управления электроприводом и устройство для его реализации (варианты)

Similar Documents

Publication Publication Date Title
EP0308621B1 (en) Power system stabilizer
KR20010106402A (ko) 서보제어장치
JPS6333389B2 (ru)
US4437045A (en) Method and apparatus for controlling servomechanism by use of model reference servo-control system
US5729111A (en) Inertia lowering control apparatus capable of suppressing axially torsional vibration occurring on flexible drive shaft of two-mass inertia resonant system
US5532565A (en) Controller
KR970003192B1 (ko) 속도 제어시 2-매스 시스템의 관성을 추정하기 위한 방법 및 시스템
JP3266931B2 (ja) モータの制御装置
RU2079961C1 (ru) Устройство для управления электроприводом с фрикционной нагрузкой
JPH026308B2 (ru)
CA2079681C (en) Method of suppressing torsional vibration in a motor speed control system and apparatus therefor
US3949287A (en) Position-control servo system with speed-dependent damping action
JPH09282008A (ja) サーボ制御装置
US5646492A (en) Electric motor controller having independent responses to instructions and external disturbances
JP2850075B2 (ja) 可変構造制御方法
JP3360935B2 (ja) 電動機制御系における機械共振検出装置及び制振制御装置
JPS623666B2 (ru)
KR100426651B1 (ko) 마찰토크 보상을 위한 장력제어장치 및 그 방법
JP3244184B2 (ja) 状態空間法によるねじり系制御装置
Yokokura et al. Single inertialization of a 2-inertia system based on fine torsional torque and sensor-based resonance ratio controllers
SU928300A1 (ru) Самонастраивающа с система управлени
SU347736A1 (ru) Библиотечка
KR100222953B1 (ko) 서보시스템의 제어방법 및 제어장치
JP3266391B2 (ja) 制御装置
SU1436254A1 (ru) Электропривод с упругой механической св зью