RU2077712C1 - Способ определения тяжелых элементов - Google Patents

Способ определения тяжелых элементов Download PDF

Info

Publication number
RU2077712C1
RU2077712C1 RU94009632A RU94009632A RU2077712C1 RU 2077712 C1 RU2077712 C1 RU 2077712C1 RU 94009632 A RU94009632 A RU 94009632A RU 94009632 A RU94009632 A RU 94009632A RU 2077712 C1 RU2077712 C1 RU 2077712C1
Authority
RU
Russia
Prior art keywords
detector
irradiation
radiograms
elements
radiogram
Prior art date
Application number
RU94009632A
Other languages
English (en)
Other versions
RU94009632A (ru
Inventor
С.Ф. Винокуров
В.В. Кушин
В.П. Перелыгин
Н.Б. Хохлов
Original Assignee
Винокуров Станислав Федорович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Винокуров Станислав Федорович filed Critical Винокуров Станислав Федорович
Priority to RU94009632A priority Critical patent/RU2077712C1/ru
Publication of RU94009632A publication Critical patent/RU94009632A/ru
Application granted granted Critical
Publication of RU2077712C1 publication Critical patent/RU2077712C1/ru

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: определение низких субфоновых содержаний тяжелых и благородных металлов в минералах, горных породах, рудах при поиске, разведке и отработке рудных месторождений. Сущность изобретения: способ состоит в измерении и сравнении f- и α-радиограмм, полученных при облучении исследуемых образцов в пучке быстрых ионов 6C12 ускорителя. f-радиограммы получают путем помещения исследуемого образца и детектора из тонкой слюды в пучок ионов ускорителя. Изображение на f-радиограмме формируют в процессе облучения треками мгновенных осколков деления элементов детектора из фторфлогопита. Экспозиция образца и детектора находится в пределах 1012-1017 ионов/см2. После облучения производится термическая обработка детектора в интервале температур 450-600oС в течение 4-6 часов. После этого получают радиограмму, экспонируя детектор из полимерного материала в течение 1-1000 часов. Повторное облучение в потоке ядер 7N14 позволяет выделить элемент - платину и определить его концентрацию в исследуемом образце.

Description

Изобретение относится к методам анализа материалов радиационными способами и может быть использовано для определения тяжелых элементов, в том числе и благородных металлов, при низких субфоновых их содержаниях в горных породах, рудах и минералах при поиске, разведке и отработке рудных месторождений.
Известен способ определения золота путем использования нейтронно-активационной радиографии.
Однако этот способ неприменим для указанных условий в связи с тем, что фон наведенной активности составляет 80% а пространственное разрешение хуже 100 мкм. Что касается платиноидов, то их нейтронная радиография неизвестна.
Известен способ определения тяжелых элементов, включающий получение на детекторах последовательно f-радиограммы мгновенных осколков деления путем облучения шлифа пород в потоке ионов, затем α-радиограммы наведенной a-активности путем экспонирования детектора от ранее облученного шлифа с использованием в качестве детекторов соответственно слюды, термически обработанной после облучения, а затем полимерного материала с последующим сопоставительным анализом распределений и концентраций, полученных на детекторах, содержащих f- и a-радиографические отображения группы тяжелых элементов, по результатам которого судят о распределении и суммарной концентрации группы исследуемых элементов в шлифе.
Недостатками аналога и прототипа являются невозможность идентификации в рудах и породах группы платиновых элементов и селективное выделение каждого из них.
Технический результат, получаемый от реализации предлагаемого изобретения, определение характера распределения и суммарной концентрации всех элементов платиновой группы с низкими кларками распространения в земной коре с дальнейшим селективным выделением элемента платины и определения его концентрации в исследуемом материале.
Указанный технический результат достигается тем, что в способе определения тяжелых элементов, включающем получение на детекторах последовательно f-радиограммы мгновенных осколков деления путем облучения шлифа пород в потоке ионов, затем a-радиограммы наведенной a-активности путем экспонирования детектора от ранее облученного шлифа с использованием в качестве детекторов соответственно слюды, термически обработанной после облучения, а затем полимерного материала с последующим сопоставительным анализом распределений и концентраций, полученных на детекторах, содержащих f- и a-радиографические отображения группы тяжелых элементов, по результатам которого судят о распределении и суммарной концентрации группы исследуемых элементов в шлифе, в качестве детектора для f-радиограммы используют искусственную слюду фторфлогопит, шлиф облучают потоком ионов 6C12 с интенсивностью 1012-1017 см-2, а термическую обработку снятого после облучения детектора проводят при температуре 450-600oС в течение 4-6 часов, экспонирование наведенным a-излучением проводят в течение 1-100 часов, из сопоставительного анализа f- и a-радиограмм судят о наличии элементов платиновой группы и более тяжелых элементов, распределении и их суммарной концентрации, далее проводят повторное облучение шлифа потоком ионов 7N14 и повторяют всю последовательность вышеописанных операций и по результатам второго сопоставительного анализа выделяют элемент платину и определяют его концентрацию в шлифе.
Авторами установлено, что на детекторе из искусственной слюды - фторфлогопита получается качественное f-отображение исследуемой группы платиновых элементов (в прототипе вообще определяются более тяжелые элементы, начиная со свинца: свинец, торий, уран), поэтому и материал детектора для f-радиографии и соответствующий ему температурный режим устанавливаются принципиально другими (ниже 450oС). При температуре выше 450oС детектор из мусковита (прототип) становится дефектным. Авторами впервые установлены тип ионов для повторного облучения с целью выделения отдельных элементов, энергия, термический режим, тип детектора для f-радиографии. Существенные отличительные признаки тесно связаны между собой и направлены на достижение вышеуказанного технического результата. Подчеркнем еще раз, что в предлагаемом способе проводят повторное облучение в потоке ядер от Не4 до Ar40 для повышения селективности и выделения из группы элементов определяемого элемента.
Пример реализации.
На геологический шлиф с видимыми включениями ферроплатины размером 0,1-1 мм помещался тонкий детектор из слюды фторфлогопита и облучался в потоке ускоренных ионов 6C12, энергия ионов составляла 110 МэВ, экспозиция 1014 ионов/см2. После экспонирования детектор отжигался при температуре 490oС в течение 5 часов и травился в плавиковой кислоте по стандартной методике.
Полученная в результате f-радиограмма сформировалась осколками всех элементов тяжелее редкометальной группы, содержащихся в видимых включениях (кларках).
Для получения a-радиограмм на поверхности шлифа после экспонирования в пучке ионов размещался полимерный детектор на основе нитрата целлюлозы CN-850 экспонитовался в течение 7 суток и протравливался стандартным способом.
При сравнении f- и a-радиограмм оказалось, что зарегистрированный на f-радиограмме элемент не производит a-активацию. При выбранных параметрах пучка ионов известно, что элементы тяжелее золота (включая золото) a-активируются, а граница регистрации осколков деления соответствует элементам платиновой группы. Таким образом, зарегистрированное на f-радиограмме изображение отвечает распределению элементов платиновой группы.
Аналогичная процедура, проведенная с повторным облучением в потоке бомбардирующих ионов 7N14, позволила выделить из платиновой группы элемент платину, а измеренная его концентрация соответствует концентрации платины в ферроплатине.
Обоснование способа в целом и его признаков.
Способ определения состоит в измерении и сравнении f- и a-радиограмм, получаемых при облучении исследуемых образцов в пучке быстрых ионов ускорителя.
Для получения f-радиограмм исследуемый образец и детектор из тонкой слюды помещают в пучок ионов ускорителя. Изображение на f-радиограмме формируется в процессе облучения треками мгновенных осколков деления тяжелых элементов, содержащихся в исследуемых кларках. Кроме того, детектор регистрирует треки ядер отдачи и составных ядер, образованных при прохождении пучка ионов через слюду. Экспозиция образца и детектора должна находиться в пределах 1012-1017 ионов/см2. Нижний предел определяется сечением деления составных ядер. Экспозиция 1012 ионов/см2 является предельной для идентификации кларков со 100% содержанием элемента. При меньших экспозициях чувствительность падает и ухудшается качество радиографического изображения. Верхний предел определяется радиационной стойкостью детектора. После облучения проводится термическая обработка в интервале температур 400-600oС в течение 4-6 часов. В процессе термической обработки при указанных параметрах происходит отжиг треков ядер отдачи и составных ядер, однако сохраняются треки осколков деления определяемых элементов. При термической обработке с температурой ниже 400oС в течение менее 4 часов не достигается отжиг треков ядер отдачи и составных ядер. При термической обработке с температурой выше 600oС в течение более 6 часов происходит отжиг треков осколков деления определяемых элементов. После термической обработки производят травление детектора в плавиковой кислоте по стандартной процедуре.
Полученная таким образом f-радиограмма образована треками осколков деления наиболее тяжелых элементов и благородных металлов, содержащихся в образце. Граница регистрации, т.е. наиболее легкий из элементов, способный дать вклад в радиограмму, зависит от типа (заряд и масса) ускоренных ионов, их энергии, а также параметров обработки детектора после облучения. Измеряя эти параметры, можно понижать границу регистрации тяжелых элементов от элементов Th-U группы до редкоземельной группы включительно.
Для установления конкретного элемента или группы близких элементов измеряется a-радиограмма наведенной в исследуемом образце активности. С этой целью на поверхность образца после экспонирования в пучке ионов помещают полимерный трековый детектор, способный регистрировать треки a-частиц, и экспонируют 1-100 часов. Пределы экспонирования определяются периодом полураспада a-активных изотопов наведенной активности. После экспонирования производится травление детектора по стандартной методике. Полученное a-радиографическое изображение сформировано треками a-частиц, образованных продуктами распада составных ядер наиболее тяжелых элементов, содержащихся в образце. Граница регистрации, т.е. наиболее легкий элемент, дающий вклад в a-радиограмму определяется типом (заряд, масса) бомбардирующего иона и его энергией. Подбирая эти параметры можно изменять границу регистрации и формировать a-радиограмму только определенной группой элементов.
Сопоставление f и a-радиограмм позволяет идентифицировать исследуемый элемент (или группу элементов) в образце, измерить его концентрацию и пространственное распределение.
Повторение вышеуказанных измерений с другим типом бомбардирующих ионов в диапазоне от Не4 до Ar40 позволяет увеличить селективность и выделить из группы элементов отдельный элемент.
Предлагаемое техническое решение может быть использовано в геологии, геохимии, минералогии при поисках, разведке и отработке рудных месторождений, а также для решения различных прикладных и научно-исследовательских задач. Способ позволяет обеспечить установление характера распределения и концентрации платиновых элементов и золота в образцах пород и руд, которые невозможно идентифицировать известными ранее способами.

Claims (1)

  1. Способ определения тяжелых элементов в породе, включающий получение f-радиограммы мгновенных осколков деления при облучении в потоке ионов шлифа породы с размещенным на его поверхности детектором из слюды с последующей его термообработкой после облучения, регистрацию α-радиограммы наведенной a-активности того же шлифа путем экспонирования детектора из полимерного материала и сопоставление полученных f- и a-радиограмм, по результату которого судят о распределении и суммарной концентрации группы исследуемых элементов, отличающийся тем, что для получения f-радиограммы используют детектор из искусственной слюды фторфлогопита, облучение проводят в потоке ионов 6C12 интенсивности 1012 1017 см-2, а термическую обработку детектора при температуре 450 - 600oС в течение 4 6 ч, полимерный детектор экспонируют в течение 1 100 ч и по сопоставлению f- и α-радиограмм судят о наличии, распределении и суммарной концентрации элементов платиновой группы и более тяжелых, дополнительно проводят облучение того же шлифа потоком ионов 7N14 повторяют всю последовательность операций, проведенных после первого облучения, и по результатам второго сопоставительного анализа f- и α-радиограмм выделяют элемент платину и определяют его концентрацию в шлифе.
RU94009632A 1994-03-21 1994-03-21 Способ определения тяжелых элементов RU2077712C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94009632A RU2077712C1 (ru) 1994-03-21 1994-03-21 Способ определения тяжелых элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94009632A RU2077712C1 (ru) 1994-03-21 1994-03-21 Способ определения тяжелых элементов

Publications (2)

Publication Number Publication Date
RU94009632A RU94009632A (ru) 1996-01-20
RU2077712C1 true RU2077712C1 (ru) 1997-04-20

Family

ID=20153726

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94009632A RU2077712C1 (ru) 1994-03-21 1994-03-21 Способ определения тяжелых элементов

Country Status (1)

Country Link
RU (1) RU2077712C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ермолаев Н.П. и др. Геология рудных месторождений. Т.ХХV, N 2, 1983, с.86-91. Авторское свидетельство СССР N 1205686, кл. G 01V 5/00, 1984. Ермолаев А.Н. и др. Советская геология. - N 7, 1987, с.27-33. *

Similar Documents

Publication Publication Date Title
Mejdahl et al. Procedures used for luminescence dating of sediments
DE3750901D1 (de) Erzanalyse.
US3309518A (en) Method of aerial prospecting which includes a step of analyzing each sample for element content, number and size of particles
Coote et al. A rapid method of obsidian characterisation by inelastic scattering of protons
US2551449A (en) Method for locating deposits
Elmore Ultrasensitive radioisotope, stable-isotope, and trace-element analysis in the biological sciences using tandem accelerator mass spectrometry
Keynes et al. Determination of the ionic exchange during nervous activity by activation analysis
Vogel-Mikuš et al. 25 Analytical Tools for Exploring Metal Accumulation and Tolerance in Plants
RU2077712C1 (ru) Способ определения тяжелых элементов
Cox et al. Spectroscopic tools applied to flerovium decay chains
RU2105290C1 (ru) Способ определения тяжелых элементов
US4267445A (en) Uranium prospecting method
Zuzaan et al. X‐Ray Fluorescence Studies of Biological Objects in Mongolia
Nandy Neutron activation analysis: application in geology and medicine
Abuzeida et al. Selective liquid scintillation method of uranium α-spectrometry
JP2001235547A (ja) 多重ガンマ線検出による高感度核種分析方法
Gonsior et al. Trace element analysis by particle and photon-induced X-ray emission spectroscopy
Gihwala et al. Analysis using prompt gamma-ray emission
Dai et al. Comparison of quantitative PIXE and EPMA microanalysis of mineral samples
Kolotov et al. Development of digital gamma-activation autoradiography for the determination of platinum group element inclusions in geological samples
Lyon Practical applications of activation analysis and other nuclear techniques
SU397081A1 (ru) Способ количественного определени в горных породах
RU2088958C1 (ru) Способ определения принадлежности исследуемого образца к конкретной природной минеральной ассоциации и способ анализа вещественного состава природной минеральной ассоциации
Latif et al. Particle-induced X-ray emission analysis of IAEA standard reference materials, NIST standard reference materials and soils and sediments of Bangladesh
US4216380A (en) Field method for detecting deposits containing uranium and thorium