RU2076286C1 - Термоэлектрическая батарея холодильного устройства - Google Patents

Термоэлектрическая батарея холодильного устройства Download PDF

Info

Publication number
RU2076286C1
RU2076286C1 RU93039229/06A RU93039229A RU2076286C1 RU 2076286 C1 RU2076286 C1 RU 2076286C1 RU 93039229/06 A RU93039229/06 A RU 93039229/06A RU 93039229 A RU93039229 A RU 93039229A RU 2076286 C1 RU2076286 C1 RU 2076286C1
Authority
RU
Russia
Prior art keywords
power supply
thermocouple
junction
supply unit
diodes
Prior art date
Application number
RU93039229/06A
Other languages
English (en)
Other versions
RU93039229A (ru
Inventor
к Александр Иванович Лел
Александр Иванович Леляк
Алексей Филиппович Горбатов
Original Assignee
Александр Иванович Леляк
Алексей Филиппович Горбатов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Иванович Леляк, Алексей Филиппович Горбатов filed Critical Александр Иванович Леляк
Priority to RU93039229/06A priority Critical patent/RU2076286C1/ru
Publication of RU93039229A publication Critical patent/RU93039229A/ru
Application granted granted Critical
Publication of RU2076286C1 publication Critical patent/RU2076286C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Использование: в холодильной технике, в бытовых и промышленных холодильниках. Сущность изобретения: термоэлектрическая батарея содержит последовательно соединенные термоэлементы с горячими и термоэлементы с холодными спаями, блок электропитания и конденсаторы, установленные между термоэлементами, а также между последними и блоком питания. Каждый термоэлемент снабжен вторым спаем, подключенным к блоку электропитания параллельно первому спаю с противоположным расположением материалов спая, и двумя диодами, установленными последовательно спаям в каждой ветви электрической цепи термоэлемента и имеющим противоположное относительно друг друга расположение анодов и катодов. Блок электропитания выполнен в виде источника переменного тока. Диоды в ветвях цепи могут быть установлены с противоположным относительно друг друга расположением анодов и катодов или идентично. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к холодильной технике, в частности, к конструкциям термоэлектрических элементов и батарей.
Известны термоэлектрические элементы, включающие холодные и горячие спаи, последовательно соединенные между собой и снабженные источником постоянного тока.
Недостатком указанных термоэлектрических элементов является наличие значительного теплообмена по материалу термоэлектрической батареи и ее монтажным элементам, что приводит к необходимости использовать для питания значительные токи и снижает КПД термоэлектрической батареи.
Наиболее близким аналогом является термоэлектрическая батарея для производства холода [1] включающая последовательно соединенные между собой холодный и горячий спаи, снабженные источником постоянного тока. Термоэлектрическая батарея снабжена устройством, обеспечивающим разрыв теплового потока между холодной и горячей стороной термоэлектрической батареи по материалу ее монтажных элементов на время в течение которого электропитание отключено.
Основным недостатком аналога является наличие постоянного теплового потока по материалу термоэлемента и по материалу монтажных элементов в течение времени, когда электропитание термоэлектрической батареи включено. Указанные выше недостатки снижают КПД термоэлектрической батареи. Кроме того устройство может быть использовано только в нестационарных термоэлектрических охладителях, что ограничивает область его применения.
Задачей предлагаемого изобретения является создание термоэлектрической батареи с высоким КПД и более широкой областью применения.
Поставленная задача решается тем, что термоэлектрическая батарея холодильного устройства, включающая последовательно соединенные термоэлементы с горячими и термоэлементы с холодными спаями и блок электропитания согласно изобретению батарея снабжена конденсаторами, установленными между термоэлементами, а также между последними и блоком питания, а каждый термоэлемент снабжен вторым спаем, подключенным к блоку питания параллельно первому спаю с противоположным расположением материалов спая и двумя диодами, установленными последовательно спаям в каждой ветви электрической цепи термоэлемента и имеющими противоположное относительно друг друга расположение анодов и катодов, при этом блок электропитания выполнен в виде источника переменного тока.
В первом варианте выполнения термоэлектрической батареи в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены с противоположным относительно друг друга расположением анодов и катодов (фиг. 1).
Такое выполнение термоэлектрической батареи позволяет как нагреватьтак и охлаждать объект.
Во втором варианте выполнения термоэлектрической батареи в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены идентично (фиг. 2).
Такое выполнение термоэлектрической батареи позволяет работать либо в режиме охлаждения (холодильник), либо в режиме нагрева.
Конденсаторы в электрической цепи между термоэлементами и блоком электропитания обеспечивают постоянный тепловой разрыв между горячими и холодными спаями термоэлементов, что устраняет переток тепла между ними и, как следствие, повышает КПД устройства. Введение вторых холодных и вторых горячих спаев в термоэлементах, а также выполнение источника электропитания в виде источника переменного тока обеспечивает функционирование термобатареи в непрерывном режиме.
На фиг. 1 представлена схема первого варианта выполнения термоэлектрической батареи холодильного устройства.
На фиг. 2 представлена схема второго варианта выполнения термоэлектрической батареи холодильного устройства.
На фиг. 3 представлен график зависимости I=I(t) для тока через верхнюю ветвь холодного термоэлемента и нижнюю ветвь горячего термоэлемента.
На фиг. 4 представлен график зависимости I=I(t) для тока через нижнюю ветвь холодного термоэлемента и верхнюю ветвь горячего термоэлемента.
На фиг. 5 показана зависимость I=I(t) для тока на входе и выходе термоэлементов 1 и 2.
В первом варианте выполнения термоэлектрическая батарея холодильного устройства содержит последовательно соединенные термоэлементы 1 с холодными, термоэлементы 2 с горячими спаями и блок 3 электропитания, выполненный в виде источника переменного тока. В электрической цепи между термоэлементами 1 и 2 и блоком 3 электропитания установлены соответственно конденсаторы 4, 5 и 6. Термоэлемент 1 содержит параллельно соединенные холодные первый и второй спаи 7 и 8 с противоположным расположением материалов спая и два диода 9 и 10, установленные последовательно спаям 7 и 8 с противоположным относительно друг друга расположением анодов и катодов. Спаи 7 и 8 и диоды 9 и 10 образуют соответственно две параллельные ветви 11 и 12 электрической цепи термоэлемента 1. Термоэлемент 2 содержит параллельно соединенные горячий первый и второй спаи 13 и 14 с противоположным относительно друг друга расположением материалов спая и два диода 15 и 16, установленные последовательно со спаями 13 и 14 с противоположным относительно друг друга расположением анодов и катодов. Спаи 13 и 14 и диоды 15 и 16 образуют соответственно две параллельные ветви 17 и 18 электрической цепи термоэлемента 2.
Кроме того диоды 9 и 10 термоэлемента 1 и соответствующие диоды 15 и 16 термоэлемента 2 имеют противоположное относительно друг друга расположение анодов и катодов (фиг. 1).
Во втором варианте выполнения термоэлектрической батареи (фиг. 2) диоды 9 и 10 термоэлемента 1 и соответствующие им диоды 15 и 16 термоэлемента 2 установлены относительно друг друга идентично.
Термобатарея работает следующим образом. Питание от блока 3 источника электропитания подается на схему (фиг. 1) через конденсатор 4 в виде переменного тока фиксированной частоты (фиг. 4). Через диод 9 проходят импульсы только положительной полярности (фиг. 2). В соответствии с эффектом Пельтье на спае 7 в ветви 11 термоэлемента 1 поглощается тепло из окружающей среды, причем количество поглощенного тепла составляет
Figure 00000002
(1)
где: Р коэффициент Пельтье (ЭДС Пельтье),
I=I(wt) сила тока;
t время;
w частота.
В ветви 12 термоэлемента 1 диод 10 пропускает импульсы тока только отрицательной полярности (фиг. 3), в результате чего на спае 8 поглощается такое же количество тепла, как и на спае 7.
На выходе термоэлемента 1 течет переменный ток, причем, его частота остается неизменной относительно частоты тока на входе термоэлемента (фиг. 4). Изменение концентрации электронов на одной обкладке конденсатора 5 (аналогично и для конденсаторов 4 и 6) приводит к изменению концентрации электронов на другой обкладке и, соответственно к наличию тока в электрической цепи.
В ветви 17 термоэлемента 2 течет ток через диод 15, который пропускает импульсы только положительной полярности. В соответствии с эффектом Пельтье на спае 13 выделяется тепло в окружающую среду, причем количество выделенного тепла соответствует количеству поглощенного на спае 7 термоэлемента 1. В ветви 18 термоэлемента 2 спай 14 включен в обратном направлении относительно спая 13 в ветви 17, а диод 16 пропускает импульсы тока только отрицательной полярности, в результате прохождения которых через спай 14 в среду его окружающую выделяется такое же количество тепла, сколько его поглощается спаем 8 термоэлемента 1. На выходе термоэлемента 2 течет переменный ток такой же как на входе термоэлемента 1 (фиг. 4).
Во втором варианте выполнения термоэлектрической батареи (фиг. 2) термоэлемент 2 функционирует идентично термоэлементу 1 вследствие одинакового расположения диодов в этих термоэлементах. В этой связи на спаях 7, 8 и 13, 14 идет процесс только поглощения теплоты. Причем в первом варианте конденсаторы 4, 5 и 6 установлены в схеме для предотвращения теплообмена по материалу тоководов между термоэлементами 1 и 2, термоэлементом 1 и источником питания 3, термоэлементом 2 и источником питания 3. Во втором варианте (фиг. 2) конденсатор 5 предназначен для коммуникации спаев 7, 8 и 13, 14 в последовательности, обеспечивающей только поглощение тепла из среды их окружающей. Конденсаторы 4 и 6 установлены для предотвращения теплообмена по материалу тоководов между термоэлементами 1 и 2 и источником питания 3.
Известно, что добротность термоэлектрической батареи описывается следующим соотношением:
Z=α2/p•x (2),
где: α эмпирический коэффициент, имеющий размерность (в/град), р - удельная электропроводность, х суммарный коэффициент теплопроводности среды между холодной и горячей стороной термобатареи (крепежный материал, тоководы термоэлементов и т.д.).
Из соотношения (2) видно, что если х стремится к нулю, что реально позволяет сделать заложенное в предлагаемом устройстве техническое решение, поскольку теплопроводность материала между обкладками конденсаторов 4, 5 и 6
величина управляемая посредством подбора диэлектрика с нужными свойствами, то добротность термоэлемента стремится к бесконечности и, как следствие, КПД устройства, в котором он используется будет стремиться к 100%
По оценочным данным КПД прототипа составляет не более 2,5 5% а КПД предлагаемого устройства не менее 25 50% Кроме того, по сравнению с прототипом предлагаемая термоэлектрическая батарея может работать как в стационарном, так и в нестационарном режиме в холодильных устройствах разного объема и хладопроизводительности, что расширяет область его применения.
Промышленная применимость.
Изобретение может быть использовано для создания температурных полей с требуемой конфигурацией и максимальной температурой ниже температуры среды, окружающей произвольный теплоизолированный объем. В частности, оно может быть использовано для создания пониженной температуры в бытовых и промышленных холодильниках, термостатах.

Claims (3)

1. Термоэлектрическая батарея холодильного устройства, содержащая последовательно соединенные термоэлементы с холодными и/или горячими спаями и блок электропитания, отличающаяся тем, что батарея снабжена конденсаторами, установленными между термоэлементами, а также между последними и блоком питания, а каждый термоэлемент снабжен вторым спаем, подключенным к блоку электропитания параллельно первому спаю с противоположным расположением материалов спая, и двумя диодами, установленными последовательно со спаями в каждой ветви электрической цепи термоэлемента и имеющими противоположное относительно друг друга расположение анодов и катодов, при этом блок электропитания выполнен в виде источника переменного тока.
2. Батарея по п. 1, отличающаяся тем, что в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены с противоположным относительно друг друга расположением анодов и катодов.
3. Батарея по п. 1, отличающаяся тем, что в ветвях электрической цепи двух ближайших последовательно размещенных термоэлементов диоды установлены идентично.
RU93039229/06A 1993-07-30 1993-07-30 Термоэлектрическая батарея холодильного устройства RU2076286C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93039229/06A RU2076286C1 (ru) 1993-07-30 1993-07-30 Термоэлектрическая батарея холодильного устройства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93039229/06A RU2076286C1 (ru) 1993-07-30 1993-07-30 Термоэлектрическая батарея холодильного устройства

Publications (2)

Publication Number Publication Date
RU93039229A RU93039229A (ru) 1996-01-20
RU2076286C1 true RU2076286C1 (ru) 1997-03-27

Family

ID=20145996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93039229/06A RU2076286C1 (ru) 1993-07-30 1993-07-30 Термоэлектрическая батарея холодильного устройства

Country Status (1)

Country Link
RU (1) RU2076286C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1142711, кл. F 25 B 21/02, 1985. *

Similar Documents

Publication Publication Date Title
Min et al. Experimental evaluation of prototype thermoelectric domestic-refrigerators
Riffat et al. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation
RU2594371C2 (ru) Электронное устройство управления температурой, охладитель, использующий его, нагреватель, использующий его, и способ управления им
Adams et al. High switching ratio variable-temperature solid-state thermal switch based on thermoelectric effects
GB780725A (en) Improvements in or relating to thermoelectric devices
US20130174580A1 (en) Household System with Multiple Peltier Systems
Sulaiman et al. Cooling performance of thermoelectric cooling (TEC) and applications: a review
Kodeeswaran et al. Precise temperature control using reverse seebeck effect
Rokde et al. Peltier based eco-friendly smart refrigerator for rural areas
Ghoshal et al. Efficient switched thermoelectric refrigerators for cold storage applications
US3402561A (en) Refrigerating apparatus
Biswas et al. Development and experimental investigation of portable solar-powered thermoelectric cooler for preservation of perishable foods
RU2076286C1 (ru) Термоэлектрическая батарея холодильного устройства
Alaoui et al. Solid state heater cooler: design and evaluation
KR20130017239A (ko) 열전 모듈을 위한 팬 제어 장치
JPH11187682A (ja) 蓄熱・蓄冷熱式電力貯蔵装置
Chaudhari et al. Eco-Friendly Refrigerator Using Peltier Device
Vián et al. Computational optimization of a thermoelectric ice-maker as a function of the geometric parameters of a peltier module
Islam et al. A Novel Design of A Dual-Powered Automatic Peltier Effect Cooler
CN216048472U (zh) 热电制冷系统及制冷设备
KR200240139Y1 (ko) 열전반도체소자를 이용하여 가열과 냉각을 동시에실현하는 장치
KR102311546B1 (ko) 전기화학 펠티어 셀 및 그의 제작 방법
Harivardhanreddy et al. Design and Analysis of Solar Refrigeration Using Peltier Plate
Sungkar et al. Performance of thermoelectrics and heat pipes refrigerator
Ong Development of the hybrid storage system using thermoelectric generator

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040731