RU2069835C1 - Оптический прицел - Google Patents

Оптический прицел Download PDF

Info

Publication number
RU2069835C1
RU2069835C1 RU93054842A RU93054842A RU2069835C1 RU 2069835 C1 RU2069835 C1 RU 2069835C1 RU 93054842 A RU93054842 A RU 93054842A RU 93054842 A RU93054842 A RU 93054842A RU 2069835 C1 RU2069835 C1 RU 2069835C1
Authority
RU
Russia
Prior art keywords
switch
sight
lens
light source
multivibrator
Prior art date
Application number
RU93054842A
Other languages
English (en)
Other versions
RU93054842A (ru
Inventor
Андрей Юрьевич ГАВРИЛОВ
Михаил Юрьевич Гаврилов
Михаил Иванович Седов
Юрий Владимирович Хмельщиков
Борис Иванович Черный
Original Assignee
Андрей Юрьевич ГАВРИЛОВ
Михаил Юрьевич Гаврилов
Михаил Иванович Седов
Юрий Владимирович Хмельщиков
Борис Иванович Черный
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Юрьевич ГАВРИЛОВ, Михаил Юрьевич Гаврилов, Михаил Иванович Седов, Юрий Владимирович Хмельщиков, Борис Иванович Черный filed Critical Андрей Юрьевич ГАВРИЛОВ
Priority to RU93054842A priority Critical patent/RU2069835C1/ru
Publication of RU93054842A publication Critical patent/RU93054842A/ru
Application granted granted Critical
Publication of RU2069835C1 publication Critical patent/RU2069835C1/ru

Links

Images

Landscapes

  • Telescopes (AREA)

Abstract

Изобретение относится к области геодезии, астрономии, военной и спортивной стрелковой технике. Сущность изобретения состоит в том, что оптический прицел содержит расположенные в зрительной трубе вдоль оптической оси объектив, диафрагму, источник света, а также источник питания и выключатель, при этом источник содержит три линзовых элемента, первый и третий из которых выполнены плосковыпуклыми, а второй - плосковогнутым. Выполнение объектива с определенным подбором геометрических параметров позволяет снять жесткое условие совмещения оси глаза с осью оптического коллиматорного прицела и одновременно повысить точность прицеливания. 6 з. п. ф-лы, 5 ил.

Description

Изобретение относится к области геодезии и может найти применение в астрономии, военной и спортивной стрелковой технике, в навигационном приборостроении и робототехнике.
Известен оптический прицел коллиматорного типа, содержащий корпус зрительной трубы, в котором последовательно вдоль оптической оси расположены объектив, диафрагма, источник света, а также источник питания и выключатель, при этом источник света через выключатель соединен с источником питания (Франция. пат. N 2602037. F 41 G 1/38).
Коллимационный объектив в этом прицеле строит изображение световой марки в бесконечности. Наблюдатель двумя глазами смотрит в объект, а затем в поле зрения одного глаза вводит оптический прицел. В результате, одним глазом наблюдатель видит объект, а вторым световую марку. Изменяя положение оптической оси трубы, наблюдатель добивается совмещения световой марки с точкой объекта. При этом, положение марки в угловом поле объектива смещается во всех внеосевых точках за счет параллакса. Существует единственное положение марки, при котором ось глаза совпадает с оптической осью прицела. Следовательно, для достижения точного прицеливания необходимо связывать положение оси одного из глаз с оптической осью прицела. Это обстоятельство ограничивает как тактические возможности прицела, так и точность прицеливания.
Известен также спортивно-охотничий прицел Барс ПО 1 х 22 (Руководство по эксплуатации. Изготовитель: научно-производственное акционерное общество "Барс"), принятый за прототип). Он содержит корпус зрительной трубы, в котором последовательно вдоль оптической оси расположены двухлинзовый объектив, при этом одна линза двояковыпуклая, а другая отрицательный мениск, диафрагма, точечный источник света, а также источник питания и выключатель. Источник света через выключатель соединен с источником питания.
Этот прицел имеет также значительный параллакс по полю объектива и, как следствие, низкую точность прицеливания. При пользовании этим прицелом также требуется "привязывать" осевое положение одного из глаз к оптической оси прицела.
Аналогичными недостатками обладают и другие серийные образцы оптических прицелов типа "Сова", "Орлан" ПО 1 х 25. Барс ПО 2,5 х 22 и др.
Низкая точность прицеливания обусловлена еще и тем, что зрительная система человека выполняет движения глаз трех типов: треммор, саккадические движения и дрейф. При этом все эти движения глаз выполняются на уровне подкорковых структур мозга, в процессе поиска обнаружения и распознавания объекта. В результате этих движений глаз, при наличии параллактического смещения марки во внеосевых ее положениях, снижается точность прицеливания с оптическим прицелом.
Технический результат от использования оптического коллиматорного прицела, выполненного в соответствии с предполагаемым изобретением, заключается в повышении точности прицеливания, расширении тактических возможностей прицела.
Для достижения данного технического результата в оптическом прицеле, выполненном в соответствии с предполагаемым изобретением, содержащем корпус зрительной трубы, в котором последовательно вдоль оптической оси расположены объектив, диафрагма, источник света, а также источник питания и выключатель, при этом объектив выполнен из двух линзовых элементов, источник света через выключатель соединен с источником питания, в объектив введен дополнительный линзовый элемент, при этом входной и выходной линзовые элементы выполнены идентичными плосковыпуклыми, промежуточный линзовый элемент выполнен плосковогнутым, плоские поверхности всех линзовых элементов обращены к источнику света, а воздушные зазоры между линзовыми элементами образуют две воздушные линзы, геометрические параметры которых определены из зависимости:
Figure 00000002

где R1 R5 радиусы первого и третьего линзовых элементов соответственно;
R3 радиус второго линзового элемента;
d2, d4 соответственно толщины первой и второй воздушных линз.
В оптический прицел может быть дополнительно введен мультивибратор, при этом выход источника света, например, светодиода соединен через мультивибратор и выключатель с источником питания. Это позволяет исключить отрицательное влияние дрейфа глаза в процессе прицеливания и тем самым повысить точность прицеливания.
Для расширения тактических характеристик прицела и обеспечения высокой точности прицеливания на различных расстояниях до объекта необходимо определять расстояния до объекта. С этой целью источник света в оптическом прицеле может быть выполнен в виде светящейся марки, состоящей из трех пространственно разделенных сегментов, каждый из которых выполнен в виде протяженной светоизлучающей поверхности, разделенной на равные интервалы непрозрачными электродами, имеющими гальваническую связь с общим токопроводящим электродом, два сегмента ориентированы горизонтально, а третий сегмент ориентирован перпендикулярно им таким образом, что они образуют общую точку пересечения, совмещенную с оптической осью прицела, при этом выходы всех сегментов подключены к мультивибратору.
Для обеспечения высокой точности прицеливания в условиях изменяющегося освещения, в оптический прицел дополнительно введен блок электронного управления, источник света, содержащий RS-триггер, регистр и коммутатор, выключатель выполнен в виде кнопочного переключателя, при этом выходы кнопочного переключателя соединены со входом RS-триггера, его выход соединен со входом регистра, выходы которого объединены со входами коммутатора, другие входы коммутатора соединены с выходом мультивибратора, а выходы коммутатора объединены со входами сегментов светящейся марки.
Для уменьшения массы и габаритов оптического прицела, при одновременном обеспечении экологически чистого производства, блок электронного управления прицела может быть выполнен в виде герметизированного поликристаллического модуля, содержащего керамическую подложку, в гнездах которой расположены кристаллы микросхем, толщина подложки соответствует толщине отдельных кристаллов микросхем, при этом выходы модуля в виде контактных площадок расположены на противоположной стороне керамической подложки.
Для повышения точности прицеливания в условиях различного освещения и для обеспечения возможности автоматической установки заданного контраста световой марки в предлагаемый оптический прицел может быть дополнительно введен светочувствительный элемент, который установлен в непосредственной близости от светящейся марки, обращен светочувствительной поверхностью к объективу и электрически связан с мультивибратором.
Для упрощения конструкции устройства в предлагаемом оптическом прицеле выключатель может быть выполнен в виде совокупности светочувствительного элемента и непрозрачного экрана.
В настоящее время заявителю из анализа всех видов сведений, общедоступных на территории Российской Федерации, не известны оптические прицелы, в которых есть совокупность признаков, являющихся отличительными в заявляемом решении, т. е. данное техническое решение является новым.
Заявляемый оптический прицел имеет изобретательский уровень, т. к. для специалиста данное техническое решение явным образом не следует из существующего уровня техники. Авторами были проведены теоретические и экспериментальные изыскания, позволившие выявить отличительные признаки, обеспечивающие достижение вышеупомянутого технического результата.
На фиг. 1 приведена схема оптического прицела; на фиг. 2 оптическая схема объектива; на фиг. 3 электронный блок управления светящейся маркой; на фиг. 4 схема мультивибратора; на фиг. 5 выполнение светящейся марки.
Как видно на фиг. 1, оптический прицел содержит корпус 1 зрительной трубы и, расположенные последовательно вдоль оптической оси, объектив 2, диафрагму 3, источник света 4, корпус 5 электронного блока, элементы 6 питания, микропереключатель 7, подвижный контакт 8 переключателя.
Как видно на фиг. 2, объектив содержит, расположенные вдоль оптической оси, первый плосковыпуклый линзовый элемент 9, с радиусами R1 и R2 и толщиной d1, второй плосковогнутый линзовый элемент 10 с радиусами, соответственно, R3, R4 и толщиной d3, который отстоит от линзового элемента на расстоянии d2, а также третий плосковыпуклый линзовый элемент 11 с радиусами R5, R6 и толщиной d5, который отстоит от линзового элемента 10 на расстоянии d4, при этом геометрические параметры объектива связаны следующей зависимостью:
Figure 00000003

Как видно на фиг. 3, в электронном блоке управления кнопка переключателя 7 через триггер 12 и регистр 13 электрически связаны с коммутатором 14, другой вход которого электрически соединен с мультивибратором 15, а выход подключен к токопроводящим электродам 16 светящейся марки.
Мультивибратор 15, представленный на фиг. 4, содержит два логических элемента "ИЛИ-НЕ" 17 и 18, объединенных таким образом, что выход элемента 17 соединен со входом элемента 18, а выход элемента 18 через конденсатор С объединен со входами элемента 17. В цепи обратной связи элемента 17 включены две цепочки последовательно соединенных резисторов R, диода UD1 и резистора R2, диода UD2.
Светящаяся марка, представленная на фиг. 5, содержит расположенные на подложке (кристалле) 19 три сегмента, выполненные в виде идентичных протяженных светоизлучающих поверхностей 20, разделенных на равные интервалы непрозрачными электродами 21, имеющими гальваническую связь с общим электродом 22.
Устройство работает следующим образом.
Работа оптического прицела, выполненного согласно предполагаемому изобретению, основана на бинокулярном зрении человека, при котором оператор наблюдает объект двумя глазами, затем в поле зрения одного из глаз вводят оптический прицел, корпус которого жестко связан со стволом оружия. В результате совмещения изображения светящейся марки и изображения объекта достигается совмещение направления оптической оси прицела и, следовательно, ствола оружия на выбранную точку объекта.
Физические представления, лежащие в основе работы предложенного оптического прицела, следующие:
Компенсация параллакса достигается введением аберраций, обусловленных влиянием воздушных линз, образующихся между линзовыми элементами, параметры которых определены в результате эмпирико-аналитических исследований. Это позволяет снять жесткое условие совмещения оси глаза с оптической осью прицела и одновременно повысить точность прицеливания. В результате, все угловое поле прицела становится рабочим полем, внутри которого достигается высокая точность совмещения оси прицела с выбранной точкой объекта. Из психофизических экспериментов (Ярбус А.С. Движение глаз. М. Наука, 1969) известно, что дрейф глаз наблюдается при фиксации направления взора на неподвижную точку. Этот фактор вносит негативный вклад в точность прицеливания. Для исключения влияния дрейфа глаз во время прицеливания в данное устройство введен мультивибратор, который отключает источник света от источника питания с частотой 5 16 Гц. Пульсирующая по яркости светящаяся марка позволяет исключить дрейф глаз во время прицеливания, тем самым достигается повышение точности прицеливания.
Другой фактор саккадические движения глаз характеризуется скачкообразным перемещением направления взора. Из психофизических экспериментов известно, что эти движения глаз локализуются в наиболее информационном месте, например, в точке пересечения линий. С использованием этого свойства в прицеле светящаяся марка выполняется в виде трех сегментов, образующих одну точку пересечения; обеспечивая пульсирующую подсветку, удается практически полностью исключить дрейф в момент прицеливания, а саккадические движения оказываются локализованными в точке пересечения сегментов.
На точность стрельбы значительное влияние оказывает траектория полета пули на больших расстояниях. Траекторию полета можно компенсировать, оперативно измеряя расстояние до объекта и вводя угловую коррекцию по вертикали. Для достижения данного технического результата в предложенном оптическом прицеле каждый сегмент светящейся марки выполнен по технологии светодиодных сегментов индикатора, разбит на отдельные светящиеся штрахи (интервалы), расстояние между которыми, например, соответствует 100 мкм. Темный интервал между ними 20 мкм, точность позиционирования 1 мкм. Это позволяет оператору оценить, сколько интервалов светящейся марки сегмента совмещено с объектом, протяженность которого известна. В результате вводится поправка на траекторию пули изменением оси трубы прицела в вертикальной плоскости.
Наличие электронного блока в оптическом прицеле позволяет нажатием кнопки увеличивать значение тока, текущего через светоизлучающий элемент поверхности, методом суммирования тока на сопротивлении нагрузки, роль которой выполняют отдельные сегменты, без дополнительных сопротивлений. В результате, эффективность использования емкости источника питания достигается максимальная. Для повышения эффективности использования источника питания мультивибратор имеет скважность 1: 20, что позволяет максимально повысить световую эффективность светоизлучающих сегментов при минимуме среднего тока через последние. Наличие регистра в электронном блоке позволяет получать число уровней яркости, равное числу разрядов регистра. Каждое n + 1 нажатие кнопки, где n число разрядов регистра, отключает генератор тока с помощью коммутатора от источника питания. Электронный блок управления может быть выполнен в виде поликристаллического модуля, который образован керамической подложкой толщиной, равной толщине кристаллов бескорпусных микросхем, в сквозные гнезда которой установлены кристаллы микросхем. Все необходимые соединения выполнены напылением через специально изготовленные маски, а герметизация модуля выполнена покрытием модуля с двух сторон полиамидной пленкой с последующей температурной обработкой. В результате, полностью исключен фотолитографический процесс, имеющий токсичные отходы при травлении, уменьшаются габариты электронного блока и его масса, увеличивается его надежность, т. к. поликристаллический модуль это гибридная микросхема с высокой плотностью размещения кристаллов.
Кроме того, источник света, используемый в данном оптическом прицеле в виде светящейся марки, выполнен на кристалле, например, арсенида галлия и также размещен на керамической подложке в ее центре вместе со схемой управления. Выходные шины поликристаллического модуля имеют контактные площадки для подключения источника питания и кнопочного переключателя.
В электронном блоке управления для обеспечения высокой точности прицеливания необходимо автоматически поддерживать яркость свечения светодиодных сегментов в зависимости от условий внешней освещенности. Это достигается тем, что в электронном блоке в схеме мультивибратора фиг. 4 диод UD1 заменяется на фотодиод, который устанавливается в непосредственной близости от светоизлучающей световой марки. В результате, рассеянный свет объективом коллиматорного прицела создает фоновую засветку светочувствительной поверхности фотодиода, что вызывает изменение постоянного времени заряда емкости С1 и, как следствие, изменение скважности импульсов мультивибратора. В результате, после установки необходимой яркости нажатием кнопки, последующие изменения внешних условий освещенности автоматически устанавливают яркость свечения за счет широтно-импульсной модуляции.
Электронный блок включается в рабочее состояние с помощью механического переключателя. Это затрудняет герметизацию оптического прицела, снижает надежность работы. Электронный блок может быть выполнен таким образом, что вместо кнопочного переключателя ко входу RS-триггера может быть подключено, например, фотосопротивление или фотодиод, а сам RS-триггер выполнен на элементах триггера Шмидта. Перекрывая световой поток шторкой или, например, защитной крышкой объектива, можно переключать состояние RS-триггера и тем самым задавать необходимый уровень яркости световой марки или отключать генератор тока и энергопотребляющие кристаллы от элемента питания.
Авторами изготовлена опытная партия оптических коллиматорных прицелов, в которых реализованы все описанные технические решения, обеспечивающие достижение поставленных целей.
Основные характеристики прицела следующие:
Точность оперативной стрельбы при допустимом произвольном положении глаза стрелка относительно оружия не хуже 100 мм на 100 м.
Точность стрельбы при допустимом произвольном положении глаза стрелка относительно оружия не хуже 30 мм на 100 м.
Точность стрельбы при фиксированном положении глаза стрелка относительно прицела не хуже 10 мм на 100 м.
Допустимое произвольное положение глаза стрелка относительно оружия - любое вдоль оси ствола, в пределах 55 мм поперек оси ствола.
Время непрерывной работы прицела без замены элементов питания не менее 72-х часов.
Время работы прицела без замены элементов питания при времени непрерывной работы не более 0,5 часа в сутки ограничено сроком хранения элементов питания (двух элементов СЦ-0,18 или трех элементов СЦ-0,32 или четырех элементов МЦ-0,45) 1 год.
Опытные испытания прицела показали, что все заявленные характеристики прицела являются достоверными.

Claims (7)

1. Оптический прицел, содержащий корпус зрительной трубы, в котором последовательно вдоль оптической оси расположены объектив, диафрагма, источник света, а также источник питания и выключатель, при этом объектив выполнен из двух линзовых элементов, источник света через выключатель соединен с источником питания, отличающийся тем, что в объектив введен дополнительный линзовый элемент, при этом входной и выходной линзовые элементы выполнены идентичными, плосковыпуклыми, промежуточный линзовый элемент выполнен плосковогнутым, плоские поверхности всех линзовых элементов обращены к источнику света, а воздушные зазоры между линзовыми элементами образуют две воздушные линзы, геометрические параметры которых определены из зависимости: R1,5/R3 0,63 + 10% d2/d4 20 + 10%
где R1 R5 радиусы первого и третьего линзовых элементов;
d2, d4 соответственно толщины первой и второй воздушных линз;
d1, d3, d5 толщины линзовых элементов,
R3 радиус второго линзового элемента.
2. Прицел по п. 1, отличающийся тем, что, в него дополнительно введен мультивибратор, при этом выход источника света, например, светодиода, соединен через мультивибратор и выключатель с источником питания.
3. Прицел по пп.1 и 2, отличающийся тем, что источник света выполнен в виде светящейся марки, состоящей из трех пространственно-разделенных сегментов, каждый из которых выполнен в виде протяженной светоизлучающей поверхности, разделенной на равные интервалы непрозрачными электродами, имеющими гальваническую связь с общим токопроводящим электродом, два сегмента ориентированы горизонтально, а третий сегмент ориентирован перпендикулярно к ним таким образом, что он образует общую точку пересечения, совмещенную с оптической осью прицела, при этом выходы всех сегментов подключены к мультивибратору.
4. Прицел по пп 1 3, отличающийся тем, что в него дополнительно введен блок электронного управления яркостью источника света, содержащий RS-триггер, регистр, коммутатор, выключатель выполнен в виде кнопочного переключателя, при этом выходы кнопочного переключателя соединены с входом RS-триггера, его выход соединен с входом регистра, выходы которого объединены с входами коммутатора, другие входы коммутатора соединены с выходом мультивибратора, а выходы коммутатора объединены с входами сегментов светящейся марки.
5. Прицел по пп. 1 и 4, отличающийся тем, что блок электронного управления выполнен в виде герметизированного поликристаллического модуля, содержащего керамическую подложку, в гнездах которой расположены кристаллы микросхем, толщина подложки соответствует толщине отдельных кристаллов микросхем, при этом выходы модуля в виде контактных площадок расположены на противоположной стороне керамической подложки.
6. Прицел по пп. 1 4, отличающийся тем, что в него дополнительно введен светочувствительный элемент, который установлен с непосредственной близости от светящейся марки, обращен светочувствительной поверхностью к объекту и электрически связан с мультивибратором.
7. Прицел по пп. 1 и 6, отличающийся тем, что выключатель выполнен в виде совокупности светочувствительного элемента и непрозрачного экрана.
RU93054842A 1993-12-09 1993-12-09 Оптический прицел RU2069835C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93054842A RU2069835C1 (ru) 1993-12-09 1993-12-09 Оптический прицел

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93054842A RU2069835C1 (ru) 1993-12-09 1993-12-09 Оптический прицел

Publications (2)

Publication Number Publication Date
RU93054842A RU93054842A (ru) 1996-11-10
RU2069835C1 true RU2069835C1 (ru) 1996-11-27

Family

ID=20150051

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93054842A RU2069835C1 (ru) 1993-12-09 1993-12-09 Оптический прицел

Country Status (1)

Country Link
RU (1) RU2069835C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017027139A1 (en) * 2015-08-12 2017-02-16 Daqri Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a seethrough head-mounted display incorporating the same
US10488666B2 (en) 2018-02-10 2019-11-26 Daqri, Llc Optical waveguide devices, methods and systems incorporating same
US10649209B2 (en) 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
US11125993B2 (en) 2018-12-10 2021-09-21 Facebook Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11221494B2 (en) 2018-12-10 2022-01-11 Facebook Technologies, Llc Adaptive viewport optical display systems and methods
US11275436B2 (en) 2017-01-11 2022-03-15 Rpx Corporation Interface-based modeling and design of three dimensional spaces using two dimensional representations
US11662513B2 (en) 2019-01-09 2023-05-30 Meta Platforms Technologies, Llc Non-uniform sub-pupil reflectors and methods in optical waveguides for AR, HMD and HUD applications
US11863730B2 (en) 2021-12-07 2024-01-02 Snap Inc. Optical waveguide combiner systems and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент Франции N 2602037, кл. F 41 G 1/38, 1986. 2. Спортивно-охотничий прицел Барс ПО 1x22. Руководство по эксплуатации. АО "Барс". *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017027139A1 (en) * 2015-08-12 2017-02-16 Daqri Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a seethrough head-mounted display incorporating the same
US10007115B2 (en) 2015-08-12 2018-06-26 Daqri, Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same
US11520147B2 (en) 2016-07-08 2022-12-06 Meta Platforms Technologies, Llc Optical combiner apparatus
US10649209B2 (en) 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
US11513356B2 (en) 2016-07-08 2022-11-29 Meta Platforms Technologies, Llc Optical combiner apparatus
US11275436B2 (en) 2017-01-11 2022-03-15 Rpx Corporation Interface-based modeling and design of three dimensional spaces using two dimensional representations
US10488666B2 (en) 2018-02-10 2019-11-26 Daqri, Llc Optical waveguide devices, methods and systems incorporating same
US11221494B2 (en) 2018-12-10 2022-01-11 Facebook Technologies, Llc Adaptive viewport optical display systems and methods
US11125993B2 (en) 2018-12-10 2021-09-21 Facebook Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11614631B1 (en) 2018-12-10 2023-03-28 Meta Platforms Technologies, Llc Adaptive viewports for a hyperfocal viewport (HVP) display
US11668930B1 (en) 2018-12-10 2023-06-06 Meta Platforms Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11662513B2 (en) 2019-01-09 2023-05-30 Meta Platforms Technologies, Llc Non-uniform sub-pupil reflectors and methods in optical waveguides for AR, HMD and HUD applications
US11863730B2 (en) 2021-12-07 2024-01-02 Snap Inc. Optical waveguide combiner systems and methods

Similar Documents

Publication Publication Date Title
US20220244520A1 (en) Dual focal plane reticles for optical sighting devices
JP7118982B2 (ja) 組込型表示システムを有する観察光学器械
AU2018297577B2 (en) Aiming scope with illuminated sights and thermal imaging camera
JP2021535353A (ja) 観察光学機器のための表示システム
US20160097857A1 (en) Integrated Targeting Device
KR20210013046A (ko) 직접 능동 레티클 표적화를 구비하는 시야 광학체
RU2069835C1 (ru) Оптический прицел
ATE371845T1 (de) Nachtsicht-zielvisier mit zwei okularen
CN113446901B (zh) 用于光学瞄准装置的双焦平面分划板
CN101943546A (zh) 一种微光夜视枪用瞄准镜
WO2021022170A1 (en) Turret cap apparatus and method for calculating aiming point information
CN205958118U (zh) 一种红外夜视瞄准装置
US7652818B2 (en) Optical sight having an unpowered reticle illumination source
CN107229101B (zh) 一种非制冷型红外热像前置镜
US12013211B2 (en) Rifle scope with dual canting indicators
RU93054842A (ru) Оптический прицел
US7876501B2 (en) Optical sight having an unpowered reticle illumination source
US20130232845A1 (en) Battery free light emitting diode reflective dot gunsight
US2492353A (en) Dual periscopic sight
RU2091830C1 (ru) Коллимационный объектив
RU2072082C1 (ru) Коллиматорный бинокулярный оптический прицел
CN216011960U (zh) 分划板及瞄准镜
RU56658U1 (ru) Прибор для дневного и ночного наблюдения и прицеливания
RU2084805C1 (ru) Коллиматорный прицел
RU2156486C1 (ru) Малогабаритный прицел