RU2068378C1 - Ракета-носитель - Google Patents
Ракета-носитель Download PDFInfo
- Publication number
- RU2068378C1 RU2068378C1 SU925049481A SU5049481A RU2068378C1 RU 2068378 C1 RU2068378 C1 RU 2068378C1 SU 925049481 A SU925049481 A SU 925049481A SU 5049481 A SU5049481 A SU 5049481A RU 2068378 C1 RU2068378 C1 RU 2068378C1
- Authority
- RU
- Russia
- Prior art keywords
- stage
- fuel
- launch vehicle
- tear
- fuel tanks
- Prior art date
Links
- 239000000446 fuel Substances 0.000 claims description 21
- 239000002828 fuel tank Substances 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 12
- 238000005192 partition Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000010006 flight Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000003380 propellant Substances 0.000 abstract 7
- 235000015842 Hesperis Nutrition 0.000 abstract 1
- 235000012633 Iberis amara Nutrition 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/002—Launch systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/64—Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
- B64G1/641—Interstage or payload connectors
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Использование: в ракетной технике при создании тяжелых ракет-носителей, предназначенный, например, для обеспечения дальних межпланетных полетов. Сущность: топливные баки первой ступени выполнены совмещенными по высоте с топливными баками второй ступени и содержат систему разделения в виде пирошнуров, продолженных по периметру контакта топливных баков первой и второй ступеней. Изобретение предусматривает несколько основных конструктивно-компоновочных вариантов - несимметричный (топливные баки первой ступени расположены сбоку от топливных баков второй ступени) и симметричный (топливные баки первой ступени расположены с обеих сторон от топливных баков второй ступени). Конструкция ракеты-носителя предусматривает также наличие силового каркаса для передачи усилия от двигательных установок к третьей ступени и/или полезной нагрузке. 5 з.п. ф-лы, 14 ил.
Description
Изобретение относится к ракетной технике и может использоваться при создании перспективных ракет-носителей (РН), предназначенный как для выведения на околоземную орбиту полезной нагрузки (ПН), так и для обеспечения полетов на планеты солнечной системы.
Известны РН [Основы проектирования летательных аппаратов (транспортные системы)/Под ред. акад. В.П.Мишина, М. Машиностроение, 1985, рис. 1.13 на с. 17] пакетной схемы, содержащие ступени с топливными баками (ТБ), реактивными двигательными установками (ДУ), включающими собственно реактивный двигатель, турбонасосный агрегат, системы топливоподачи и управления вектором тяги, площадку для крепления ПН и систему управления (СУ).
Наиболее близким к заявляемому техническим решением является РН [Научные проблемы искусственных спутников/Под ред. А.А.Орлова и Э.Э.Шпильрайна, М. ИЛ, 1959, на с. 400-411 рис. 4.5 прототип] содержащая ступени с ТБ и ДУ, площадку для крепления ПН, причем ТБ 1-й ступени выполнены охватывающими ТБ 2-й ступени и связанными с ними посредством отрывных соединений. ТБ разделены на емкости с окислителем и горючим посредством вертикальных перегородок. Недостатком такой РН является их пониженная эффективность ввиду большой поверхности ТБ 1-й и 2-й ступеней, приводящей как к повышению массы, так и к чрезмерным теплопотерям при использовании криогенных компонентов топлива.
Технической задачей, решаемой в данном изобретении, является повышение конструктивной эффективности РН.
Для этого внутренние стенки охватывающих ТБ выполнены едиными, РН снабжена силовым каркасом с вертикальными стойками. Площадки для крепления 3-й и последующих ступеней и ПН размещены в верхней части каркаса, а нижней частью каркас связан с ДУ, причем с ДУ 1-й ступени посредством отрывных соединений в виде пирошнуров, а перегородка ТБ 1-й ступени связана с ТБ 2-й ступени посредством отрывного соединения и выполнена горизонтальной и серповидной формы. При этом ТБ 1-й ступени может располагаться как с одной стороны от ТБ 2-й ступени, так и с обеих сторон, имея во втором случае общее отрывное соединение. ТБ 1-й ступени может иметь в нижней части хвостовой обтекатель на отрывных соединениях, а все отрывные соединения РН могут выполняться в виде пирошнуров. В полостях вертикальных стоек силового каркаса могут размещаться магистрали горючего и окислителя и/или кабельная сеть СУ.
На фиг.1, 2 показан внешний вид РН соответственно в несимметричном и симметричном вариантах; на фиг.3, 4 эти же РН при отделении 1-й ступени; на фиг.5, 6 гидравлические схемы подачи топлива для несимметричного и симметричного вариантов; на фиг.7 вид сочленения ТБ ступеней; на фиг.8, 9 - силовой каркас РН при несимметричном и симметричном вариантах; на фиг.10 и 11 схемы размещения внутрибаковых перегородок 1-й ступени для несимметричного варианта; на фиг.12-14 то же, для симметричного варианта.
Заявляемая РН состоит из ТБ 1, 2 1-й и 2-й ступеней соответственно, ДУ 3, 4 1-й и 2-й ступеней, последующих ступеней 5 с ПН, системы разделения ступеней с пирошнурами 6, гидравлической системы с магистралями горючего и окислителя, обратными клапанами, пироклапанами 7 и отрывными гидроразъемами 8, а также из силового каркаса со стойками 9, опорной площадкой 10 и другими силовыми конструктивными элементами.
ТБ 2 2-й ступени РН выполнены цилиндрическими и содержат по бокам стойки 9, а внизу ДУ 4. ТБ 1 при несимметричном варианте (фиг.1) охватывает полукольцом ТБ 2, крепясь к стойкам 9 посредством пирошнуров 6, причем перегородка 11, разделяющая ТБ 1 на полости горючего (Г1) и окислителя (О1), может быть как вертикальной (фиг.10), так и горизонтальной (фиг.11). Периметр контакта ТБ 1 с ТБ 2 также снабжен пирошнуром 6, а силовой каркас пирокреплениями 12.
Пpи симметричном варианте ТБ 1 (фиг.2) они охватывают ТБ 2 с обоих сторон и могут содержать как по отдельности горючее (Г1) и окислитель (О1), так и в каждом баке, причем перегородка 11, как и в предыдущем варианте, может быть как вертикальной (фиг. 13), так и горизонтальной (фиг.14). И в этих случаях ТБ 1 крепится к ТБ 2 посредством пирошнуров 6, а силовой каркас содержит пирокрепления 12. Для улучшения аэродинамических характеристик в обоих вариантах ТБ 1 содержит хвостовой обтекатель 13, который может быть выполнен сбрасываемым и секционным, связанным с ТБ 1 и 2 и силовым каркасом посредством пирокреплений.
Гидравлическая система РН (фиг.5, 6) предусматривает наличие магистралей горючего и окислителя, связывающих ТБ 1 и 2 с ДУ 3, 4. При этом магистрали из ТБ 2 содержат герметизирующие клапаны 7 и обратные клапаны, препятствующие перетеканию из них горючего (Г2) и окислителя (О2) в магистрали 1-й ступени, содержащие отрывные разъемы 8.
Силовой каркас РН (фиг. 8, 9) содержит вертикальные стойки 9, на которых крепится площадка 10 для ступеней 5 (которые, в свою очередь, содержат систему отделения от площадки 10, срабатывающую после окончания работы 2-1 ступени) и силовые стойки, нижние из которых содержат пирокрепления 12 для отделения 1-й ступени.
ДУ 3, 4 могут выполняться по известной схеме (Тимнат И. Ракетные двигатели на химическом топливе. М. Мир, 1990, на с. 252 рис. 159), обеспечивающей как потребную тягу, так и регулирование ее вектора по величине и направлению. ДУ 3, 4 связаны магистралями горючего и окислителя и закреплены снизу на силовом каркасе для передачи тяги.
СУ связана с ДУ 3, 4 пирошнурами 6, пироклапанами 7, пирокреплениями 12 и другими блоками и системами, обеспечивающими полет РН на активном участке траектории (АУТ). ТБ 1, 2 содержат заправочные и дренажные клапаны. Для оптимизации РН в полостях стоек могут размещаться магистрали подачи горючего и окислителя, кабели и т.п.
В исходном положении РН находится на пусковом устройстве, пирошнуры 6, пироклапаны 7 и пирокрепления 12 обесточены, ТБ 1, 2 и др. заправлены топливом, ступени 5 с ПН пристыкованы к площадке 10.
При поступлении команды на пуск включаются ДУ 3, 4 горючее (Г1) и окислитель (О1) подают к ним из ТБ 1. Под действием силы тяги РН поднимается вверх, двигаясь по АУТ. На определенной высоте начинается программный разворот РН для набора горизонтальной составляющей скорости. Разворот может проводиться как параллельно плоскости "П" симметрии РН, так перпендикулярно ей. В первом случае разворот происходит (это характерно для несимметричного варианта) в сторону ТБ 1, поскольку опорожнение ТБ 1 приводит к смещению центра масс в сторону ТБ 2, и разворот не потребует значительного отклонения вектора тяги ДУ 3, 4.
Во втором случае (характерен для симметричного варианта фиг.2) разворот происходит перпендикулярно плоскости "П" симметрии РН, поскольку это оптимально для увеличения подъемной силы ввиду значительной парусности РН (увеличение коэффициента Су).
После выработки топлива из ТБ 1 и удаления его остатков происходит разделение ступеней. При этом СУ выдает сигнал на пирошнуры 6, пирокрепления 12 и пироклапаны 7, срабатывание которых приводит к отделению ТБ 1 с ДУ 3, обтекателем 13 и частью силового каркаса с гидромагистралями (фиг. 3, 4). ДУ 4 переходит на питание от ТБ 2 и обеспечивает дальнейший полет ступеней 5 с ПН по АУТ.
После выработки топлива из ТБ 2 происходит выключение ДУ 4 и отделение 2-й ступени от ступеней 5 с ПН, которые отстыковываются от площадки 10 и продолжают автономный полет.
При применении заявляемой РН обеспечиваются следующие преимущества:
пониженная масса ТБ (малая площадь поверхности и передача основной нагрузки через силовой каркас), что приводит к увеличению скорости РН при той же массе топлива и тягу ДУ;
малая площадь поверхности ТБ, что важно для снижения энергопотерь при использовании криогенных компонентов топлива;
уменьшенная площадь миделя, обеспечивающая снижение аэродинамических потерь;
облегчение программного разворота РН на АУТ;
повышенная надежность ввиду легкости ТБ даже при отказе пирошнуров (если будут сброшены только ДУ 1-й ступени) РН способа развить достаточную скорость;
повышенная безопасность пусков отделившиеся ТБ 1-й ступени имеют большую парусность, обеспечивающую меньшую скорость падения на поверхность земли. ЫЫЫ13
пониженная масса ТБ (малая площадь поверхности и передача основной нагрузки через силовой каркас), что приводит к увеличению скорости РН при той же массе топлива и тягу ДУ;
малая площадь поверхности ТБ, что важно для снижения энергопотерь при использовании криогенных компонентов топлива;
уменьшенная площадь миделя, обеспечивающая снижение аэродинамических потерь;
облегчение программного разворота РН на АУТ;
повышенная надежность ввиду легкости ТБ даже при отказе пирошнуров (если будут сброшены только ДУ 1-й ступени) РН способа развить достаточную скорость;
повышенная безопасность пусков отделившиеся ТБ 1-й ступени имеют большую парусность, обеспечивающую меньшую скорость падения на поверхность земли. ЫЫЫ13
Claims (6)
1. Ракета-носитель, содержащая ступени с топливными баками и двигательными установками, площадку для крепления полезной нагрузки, причем топливные баки первой ступени выполнены охватывающими топливные баки второй ступени и связаны с ними посредством отрывных соединений, а баки разделены на емкости с окислителем и горючим посредством вертикальных перегородок, отличающаяся тем, что внутренние стенки охватывающих топливных баков и наружные стенки охватываемых топливных баков выполнены едиными, ракета-носитель снабжена силовым каркасом с вертикальными стойками, причем площадка для крепления третьей и последующих ступеней полезной нагрузки размещена в верхней части каркаса, а нижней частью каркас связан с двигательными установками, причем с двигательной установкой первой ступени посредством отрывных соединений в виде пирошнуров, а перегородка топливных баков первой ступени связана с баком второй ступени посредством отрывного соединения и выполнена горизонтальной и серповидной.
2. Ракета-носитель по п.1, отличающаяся тем, что топливный бак первой ступени расположен с одной стороны от топливного бака второй ступени.
3. Ракета-носитель по п.1, отличающаяся тем, что топливные баки первой ступени выполнены охватывающими с обеих сторон топливные баки второй ступени и снабжены общим отрывным соединением.
4. Ракета-носитель по п.1, отличающаяся тем, что топливный бак первой ступени снабжен в нижней части хвостовым обтекателем, связанным с ним посредством отрывных соединений.
5. Ракета-носитель по п. 1, отличающаяся тем, что отрывные соединения расположены по всему периметру контакта топливных баков первой и второй ступеней и выполнены в виде пирошнуров.
6. Ракета-носитель по п.1, отличающаяся тем, что в полостях вертикальных стоек силового каркаса расположены магистрали горючего (окислителя) и/или кабельная сеть системы управления.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU925049481A RU2068378C1 (ru) | 1992-06-25 | 1992-06-25 | Ракета-носитель |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU925049481A RU2068378C1 (ru) | 1992-06-25 | 1992-06-25 | Ракета-носитель |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2068378C1 true RU2068378C1 (ru) | 1996-10-27 |
Family
ID=21607885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU925049481A RU2068378C1 (ru) | 1992-06-25 | 1992-06-25 | Ракета-носитель |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2068378C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150159587A1 (en) * | 2013-12-09 | 2015-06-11 | Raytheon Company | Cluster rocket motor boosters |
RU2580345C2 (ru) * | 2014-06-30 | 2016-04-10 | Александр Тимофеевич Корабельников | Способ применения ракеты-носителя на активном участке её траектории |
RU2775518C1 (ru) * | 2021-04-20 | 2022-07-04 | Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" | Двигательная установка для жидкостных ракет с инвариантными к заправке водородом и метаном топливными баками с пакетной компоновкой |
-
1992
- 1992-06-25 RU SU925049481A patent/RU2068378C1/ru active
Non-Patent Citations (1)
Title |
---|
1. Мишин В.П. Основы проектирования летательных аппаратов (транспортные системы).- М.: Машиностроение, 1985, с.17, рис.1.13. 2. Орлов А.А., Шпильрайн Э.Э. Научные проблемы искусственных спутников.- М.: ИЛ, 1959, с.400 - 411, рис.4.5. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150159587A1 (en) * | 2013-12-09 | 2015-06-11 | Raytheon Company | Cluster rocket motor boosters |
US9534563B2 (en) * | 2013-12-09 | 2017-01-03 | Raytheon Company | Cluster rocket motor boosters |
RU2580345C2 (ru) * | 2014-06-30 | 2016-04-10 | Александр Тимофеевич Корабельников | Способ применения ракеты-носителя на активном участке её траектории |
RU2775518C1 (ru) * | 2021-04-20 | 2022-07-04 | Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" | Двигательная установка для жидкостных ракет с инвариантными к заправке водородом и метаном топливными баками с пакетной компоновкой |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5350138A (en) | Low-cost shuttle-derived space station | |
US5295642A (en) | High altitude launch platform payload launching apparatus and method | |
RU2233772C2 (ru) | Система запуска и транспортирования полезной нагрузки | |
AU612549B2 (en) | Rocket-powered, air-deployed, lift-assisted booster vehicle for orbital, supraorbital and suborbital flight | |
US4964340A (en) | Overlapping stage burn for multistage launch vehicles | |
US6029928A (en) | Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft | |
US5626310A (en) | Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft | |
US4471926A (en) | Transfer vehicle for use in conjunction with a reusable space shuttle | |
US5217187A (en) | Multi-use launch system | |
US4943014A (en) | Soft ride method for changing the altitude or position of a spacecraft in orbit | |
US3300162A (en) | Radial module space station | |
US5094409A (en) | Method of providing a lunar habitat from an external tank | |
US5186419A (en) | Space transfer vehicle and integrated guidance launch system | |
WO2006119056A2 (en) | Lighter than air supersonic vehicle | |
US5813632A (en) | Salvage hardware apparatus and method for orbiting objects | |
RU2120398C1 (ru) | Многоступенчатая транспортная система с горизонтальным стартом для космического полета и способ ее запуска | |
US5441221A (en) | Heavy-lift vehicle-launched space station method and apparatus | |
RU2068378C1 (ru) | Ракета-носитель | |
Gallucci et al. | The avum orbital module for the space rider system | |
RU2120397C1 (ru) | Способ транспортировки полезного груза многоразовой авиационно-космической системой | |
RU2035358C1 (ru) | Ракета-носитель многократного использования и многокомпоновочная транспортная система | |
RU2790478C1 (ru) | Многоразовый космический летательный аппарат | |
RU2193510C2 (ru) | Орбитальный самолет | |
RU2116941C1 (ru) | Многоступенчатая ракета-носитель | |
Laursen et al. | The proton launch vehicle system current status |