RU2065146C1 - Способ определения вязкости жидких сред в трубопроводах - Google Patents

Способ определения вязкости жидких сред в трубопроводах Download PDF

Info

Publication number
RU2065146C1
RU2065146C1 SU5038540A RU2065146C1 RU 2065146 C1 RU2065146 C1 RU 2065146C1 SU 5038540 A SU5038540 A SU 5038540A RU 2065146 C1 RU2065146 C1 RU 2065146C1
Authority
RU
Russia
Prior art keywords
viscosity
temperature
constriction device
liquid
flow
Prior art date
Application number
Other languages
English (en)
Inventor
Анатолий Сергеевич Гольцов
Валерий Григорьевич Шевченко
Виктор Павлович Петров
Андрей Александрович Дворецкий
Original Assignee
Могилевское производственное объединение "Химволокно" им.В.И.Ленина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Могилевское производственное объединение "Химволокно" им.В.И.Ленина filed Critical Могилевское производственное объединение "Химволокно" им.В.И.Ленина
Priority to SU5038540 priority Critical patent/RU2065146C1/ru
Application granted granted Critical
Publication of RU2065146C1 publication Critical patent/RU2065146C1/ru

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Использование: для определения вязкости в трубопроводах технологических линий. Сущность изобретения: способ включает прокачивание жидкости насосом регулируемой производительности через термостатированное сужающее устройство, расположенное в трубопроводе, измерение расхода жидкости, ее температуры, температуры теплоносителя в теплообменнике и перепада давления в сужающем устройстве и расчет вязкости. В расчетную формулу вводят коэффициенты, учитывающие реальную геометрическую форму сужающего устройства, проскальзывание среды у стенок сужающего устройства, отвод тепла с потоком анализируемой среды и отвод тепла в теплообменник, которые определяют при ступенчатом изменении производительности насоса и/или температуры среды при известной вязкости. 1 ил.

Description

Изобретение относится к средствам измерения вязкости жидких сред в трубопроводах технологических линий, преимущественно линий производства и переработки полимеров.
Известен способ определения текущих значений вязкости жидкости сред в трубопроводах технологических линий непрерывного синтеза полимеров [1] В этом способе анализируемую жидкость прокачивают шестеренчатым насосом регулируемой производительности через термостатированное сужающее устройство трубопровода. Сужающее устройство помещают в теплообменник и с помощью регулятора производительности насоса и системы подготовки и подачи теплоносителя в теплообменник устанавливают номинальный режим работы технологической линии. В этом стационарном режиме измеряют перепад давления в сужающем устройстве, частоту вращения ротора насоса, температуру жидкости и давления за насосом. Динамическую вязкость при рабочей температуре и расход жидкости определяют расчетным путем с помощью микропроцессорного вычислительного устройства (программируемого контроллера) по формулам:
Figure 00000002
(1)
Figure 00000003
(2)
и приводят вязкость к заданной температуре по формуле;
μN=Mср•f(TN, Tср), (3) (3)
где μср динамическая вязкость жидкости при температуре Тср;
k коэффициент, величину которого определяют путем индивидуальной тарировки вискозиметра;
Rc радиус проходного сечения сужающего устройства в узкой его части;
ΔP перепад давления в сужающем устройстве;
l длина сужающего устройства (расстояние между местами установки датчиков перепада давления;
Q объемный расход жидкости через сужающее устройство;
ω угловая скорость вращения ротора насоса;
a, b известные для каждого насоса параметры;
Р давление за насосом;
mN динамическая вязкость жидкости, приведенная к температуре ТN;
TN заданная температура, к которой приводят вязкость;
Тcр. средняя температура жидкости в сужающем устройстве (рабочая температура);
f(TN, Тср.) известная функциональная зависимость вязкости от температур ТN и Тср. Сужающее устройство размещают внутри трубопровода для увеличения перепада давления ΔP до величины, необходимой для измерения ΔP с требуемой точностью.
Недостатком этого способа является низкая точность определения вязкости. Это связано с тем, что уравнение (1) описывает изотермическое течение вязкой жидкости в бесконечно длинной трубе постоянного диаметра. Расчетная формула (1) не учитывает пристеночное проскальзывание жидкости, характерное для течения расплавов некоторых полимеров, и изменение кинетической энергии потока, вызванное перестройкой профиля скоростей в его поперечных сечениях вдоль продольной оси сужающего устройства. Кроме того, сужающее устройство имеет сложную геометрическую форму и трудно в практических задачах обеспечить изотермический режим течения жидкости, вязкость которой существенно зависит от температуры, из-за разогрева жидкости, вызванного диссипацией энергии при вязкостном трении молекул жидкости. Так, например, в технологических линиях производства полимеров Могилевского ПО "Химволокно" разность между температурами стенок сужающего устройства вискозиметра [1] и средней температурой расплава полимера, вязкость которого определяют, достигает более 10oС. В то же время известно [2, c. 12-51] что указанные факторы существенно влияют на показания вискозиметров, в которых реализован способ [1]
В [2, c. 21-22] описан способ, учитывающий изменение кинетической энергии потока жидкости, вызванное перестройкой профиля скоростей в его поперечных сечениях вдоль продольной оси трубопровода. Анализируемую жидкость прокачивают через трубку с постоянным диаметром поперечного сечения (капилляр). В стационарном режиме течения измеряют перепад давления в капилляре ΔP и расход жидкости Q. Вязкость жидкости при рабочей температуре определяют расчетным путем по формуле:
Figure 00000004
(4)
где R внутренний радиус поперечного сечения трубки;
ρ плотность жидкости;
k коэффициент, величину которого определяют графической интерпретацией уравнения (4). Для этого по экспериментальным данным, которые получают при различных перепадах давления, строят график зависимости переменной
Figure 00000005

от параметра Z=Q/l. Коэффициент k определяют по углу наклона этой линии к оси Z.
Недостатком этого способа является низкая точность графического метода определения коэффициента k. Кроме того, в нем не учитывают влияние на показания вискозиметра других существенных факторов: неизотермичности течения и пристеночного проскальзывания жидкости. Он не применим к вискозиметрам, содержащим сужающее устройство.
В способе определения вязкости, описанном в [2, c. 29-39] учитывают влияние на показания вискозиметра неизотермичности течения анализируемой жидкости, вязкость которой изменяется в зависимости от температуры Т по экспоненциальному закону
μ=μo•exp{-km(T-To)} (5) (5)
Жидкость прокачивают через трубку с постоянным по длине диаметром поперечного сечения. Длину трубки и режим течения подбирают такими, чтобы на выходе из мерного участка трубки устанавливалась температура жидкости, одинаковая во всех точках поперечного сечения потока и равная температуре стенок трубки. Измеряют температуру стенок трубки, расход жидкости и перепад давления на мерном участке трубки.
Динамическую вязкость определяют по формуле:
Figure 00000006
(6)
где μo динамическая вязкость жидкости при температуре То;
km- температурный коэффициент вязкости;
Т текущая температура;
То температура стенок трубки;
λ коэффициент теплопроводности жидкости.
Формула (6) получена приближенным интегрированием дифференциальных уравнений гидродинамики и теплообмена потока указанной жидкости в мерном участке трубки.
Недостатками этого способа является то, что с его помощью можно определять вязкость только тех жидкостей, у которых вязкость изменяется в зависимости от температуры по экспоненциальному закону (5). Он применим к вискозиметрам, не содержащим сужающее устройство, и не учитывает пристеночное проскальзывание жидкости и изменение кинетической энергии ее потока по длине мерного участка трубки. Кроме того, на практике трудно осуществить требуемый режим течения в трубах технологических линий, которые обычно имеют большой диаметр поперечного сечения.
Задачей изобретения является увеличение точности определения вязкости жидкостей в трубопроводах технологических линий.
Поставленная задача достигается тем, что в качестве базового используют способ [1] в котором в расчетной формуле учитывают реальные геометрические размеры сужающего устройства, пристеночное проскальзывание жидкости, изменение кинетической энергии потока жидкости в сужающем устройстве и отвод тепла от жидкости с потоком и в теплообменник.
На чертеже изображена схема устройства, реализующего предлагаемый способ.
В предлагаемом способе, (см. чертеж) как и в способе [1] исследуемую жидкость прокачивают насосом регулируемой производительности 1 через термостатированное сужающее устройство 2 трубопровода 3. Сужающее устройство 2 и трубопровод 3 помещают внутрь теплообменника 4, снабженного системой 5 подготовки и подачи теплоносителя в теплообменник. С помощью регулятора производительности насоса 6 и системы 5 устанавливают номинальный режим течения и измеряют расход и температуру жидкости и перепад давления в сужающем устройстве. Вязкость при рабочей температуре определяют расчетным путем и приводят к заданной температуре с помощью программируемого контроллера 7. Показания датчиков расхода 8, температуры жидкости 9 и перепада давления 10 поступают в контроллер 7, который содержит аналого-цифровой преобразователь (АЦП) 11, процессор 12 и блок вывода результатов вычислений (БВ) 13. В отличие от способа [1] измеряют температуру теплоносителя в теплообменнике с помощью датчика температуры 14 и результаты измерений передают в контроллер 7. В расчетную формулу дополнительно вводят коэффициенты, учитывающие реальную геометрическую форму сужающего устройства, проскальзывание среды у стенок сужающего устройства, отвод тепла с потоком анализируемой среды и отвод тепла в теплообменник. Эти коэффициенты определяют расчетным путем (например, методом наименьших квадратов) по результатам измерений выходных сигналов датчиков 8, 9, 10 и 14, которые выполняют при ступенчатом изменении производительности насоса и (или) температуры анализируемой жидкости при известной ее вязкости. Вязкость для этих целей измеряют, например, образцовым вискозиметром. Расчетную формулу получают интегрированием дифференциальных уравнений гидродинамики и теплообмена потока анализируемой жидкости в сужающем устройстве с учетом всех указанных факторов. Например, при аппроксимации профиля скоростей потока в поперечном сечении сужающего устройства известной параболической зависимостью
Figure 00000007

расчетная формула принимает следующий вид:
Figure 00000008

Figure 00000009

где V скорость потока в точке поперечного сечения потока с радиальной координатой r;
Vo скорость потока на его осевой линии;
ε относительная скорость пристеночного проскальзывания;
m коэффициент, величина которого определяется числом Рейнольдса потока;
Tm температура теплоносителя в теплообменнике;
k0, k1, k2, k3 указанные ранее коэффициенты;
Figure 00000010

Опытный образец устройства, реализующего предлагаемый способ определения вязкости, изготовлен на базе унифицированных технических средств, испытан и эксплуатируется в составе автоматического управления технологической линией производства полиэтилдентерефталата в Могилевском ПО "Химволокно".

Claims (1)

  1. Способ определения вязкости жидких сред в трубопроводах, включающий прокачивание жидкости насосом регулируемой производительности через термостатированное сужающее устройство, расположенное в трубопроводе, измерение расхода жидкости, ее температуры, температуры теплоносителя в теплообменнике и перепада давления в сужающем устройстве, определение вязкости расчетным путем и приведение значения вязкости к заданной температуре, отличающийся тем, что в расчетную формулу дополнительно вводят коэффициенты, учитывающие реальную геометрическую форму сужающего устройства, проскальзывание среды у стенок сужающего устройства, отвод тепла с потоком анализируемой среды и отвод тепла в теплообменник, которые определяют при ступенчатом изменении производительности насоса и/или температуры среды при известной вязкости.
SU5038540 1992-03-12 1992-03-12 Способ определения вязкости жидких сред в трубопроводах RU2065146C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5038540 RU2065146C1 (ru) 1992-03-12 1992-03-12 Способ определения вязкости жидких сред в трубопроводах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5038540 RU2065146C1 (ru) 1992-03-12 1992-03-12 Способ определения вязкости жидких сред в трубопроводах

Publications (1)

Publication Number Publication Date
RU2065146C1 true RU2065146C1 (ru) 1996-08-10

Family

ID=21602426

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5038540 RU2065146C1 (ru) 1992-03-12 1992-03-12 Способ определения вязкости жидких сред в трубопроводах

Country Status (1)

Country Link
RU (1) RU2065146C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517819C1 (ru) * 2012-11-06 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Инерционный способ измерения вязкости
RU2522718C2 (ru) * 2012-11-06 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Инерционный вискозиметр
RU2737243C1 (ru) * 2020-02-12 2020-11-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Поточный прибор для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства
RU2743511C1 (ru) * 2020-02-13 2021-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Поточный способ для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Контракт Могилевского ПО "Химволокно" с фирмой "ЦИДЕ" (ФРГ) МР-01/03-0667, 46-01/01285-117, ч. 4, 6, том N 5, Могилев, 1982. 2. Малкин А.Я., Чалых А.Е. Диффузия и вязкость полимеров. Методы измерений. М.: Химия, 1979. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517819C1 (ru) * 2012-11-06 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Инерционный способ измерения вязкости
RU2522718C2 (ru) * 2012-11-06 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Инерционный вискозиметр
RU2737243C1 (ru) * 2020-02-12 2020-11-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Поточный прибор для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства
RU2743511C1 (ru) * 2020-02-13 2021-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Поточный способ для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства

Similar Documents

Publication Publication Date Title
CN111801556B (zh) 用于非侵入式测定流过导管区段的流体的温度的方法
US5272912A (en) Apparatus and method for measuring viscosities of liquids
EP2641071B1 (en) Determining the heat flow emanating from a heat transporting fluid
US20140005957A1 (en) Viscometer for newtonian and non-newtonian fluids
Graur et al. The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section
CN109506730A (zh) 热式流量计
RU2065146C1 (ru) Способ определения вязкости жидких сред в трубопроводах
CN104502231B (zh) 一种用于高温高压的双毛细管粘度计及其测试方法
Toledo et al. Flow of fluids
Abichandani et al. Hydrodynamics and heat transfer in liquid full scraped surface heat exchangers—a review
RU2743511C1 (ru) Поточный способ для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства
Patil Isothermal laminar fluid flow in spiral tube coils
Choi et al. Local friction and heat transfer behavior of water in a turbulent pipe flow with a large heat flux at the wall
El-Hawary Effect of combined free and forced convection on the stability of flow in a horizontal tube
Abesekera et al. Liquid flow measurement by cross-correlation of temperature fluctuations
Malinowski et al. Measurement of the fluid flow rate with use of an elbow with oval cross section
RU2737243C1 (ru) Поточный прибор для измерения вязкости ньютоновских и неньютоновских жидкостей с помощью щелевого сужающего устройства
Mandal et al. Gas—liquid flow through helical coils in horizontal orientation
Ilicali et al. Laminar flow of power law fluid foods in concentric annuli
Johnson et al. Determination of viscosity of food systems
SU1376022A1 (ru) Способ автоматического определени температуропроводности жидкости
SU560172A1 (ru) Способ определени теплофизических свойств движущейс жидкости
RU2169905C2 (ru) Способ определения расхода в трубопроводе
Everts et al. Transitional flow regime nomenclature for smooth horizontal tubes heated at a constant heat flux
Steffe Problems in using apparent viscosity to select pumps for pseudoplastic fluids