RU2061926C1 - Конденсатоотводчик - Google Patents
Конденсатоотводчик Download PDFInfo
- Publication number
- RU2061926C1 RU2061926C1 RU93017592A RU93017592A RU2061926C1 RU 2061926 C1 RU2061926 C1 RU 2061926C1 RU 93017592 A RU93017592 A RU 93017592A RU 93017592 A RU93017592 A RU 93017592A RU 2061926 C1 RU2061926 C1 RU 2061926C1
- Authority
- RU
- Russia
- Prior art keywords
- steam
- nozzle
- mixer
- condensate
- ejector
- Prior art date
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Использование: в устройствах отвода конденсата из паропотребляющих аппаратов. Сущность изобретения: конденсатоотводчик содержит смеситель 1, в нижней части которого установлено сопло Лаваля 4, заключенный в корпус 15 газоструйный щелевой эжектор, активное сопло которого соединено со входом в сопло Лаваля 4 и тангенциальным патрубком 6 для подвода конденсата. Вход в сопло Лаваля 4 соединен также посредством трубопровода с вентилем 8 с нижней частью смесителя 1. Нижняя часть сушильного барабана 18 соединена с пассивным соплом эжектора, а средняя часть - с сепаратором 23. 1 ил.
Description
Изобретение относится к трубопроводной арматуре, а именно к устройствам для отвода конденсата из паропотребляющих аппаратов.
Конденсатоотводчики являются весьма существенным элементом систем сбора конденсата. Конденсатоотводчики устанавливаются после паровых нагревательных аппаратов на трубопроводах, транспортирующих пар. Их назначение - автоматически пропускать конденсат и задерживать пар, не отработавший в пароиспользующих аппаратах или транспортируемый по паропроводу.
По принципу действия существующие конструкции конденсатоотводчиков делятся на три группы:
конденсатоотводчики с механическим затвором;
конденсатоотводчики с гидравлическим сопротивлением;
конденсатоотводчики с гидравлическим затвором.
конденсатоотводчики с механическим затвором;
конденсатоотводчики с гидравлическим сопротивлением;
конденсатоотводчики с гидравлическим затвором.
Известно устройство для отвода конденсата из пароприемников и трубопроводов, содержащее корпус с кожухом, внутри которого размещен дисковый клапан, примыкающий к выпускному и впускному отверстию [1]
Основным недостатком такого конденсатоотводчика является невысокая надежность в работе и значительный проскок пара в выпускной канал при срабатывании клапана.
Основным недостатком такого конденсатоотводчика является невысокая надежность в работе и значительный проскок пара в выпускной канал при срабатывании клапана.
Известно устройство, содержащее корпус с крышкой, которая имеет два канала для входа и выхода конденсата, а между крышкой и корпусом находится управляющая камера с размещенным в ней дисковым клапаном [2]
Основным недостатком такого конденсатоотводчика является необходимость снабжения его источником охлаждающей среды, подаваемой в крышки этого устройства.
Основным недостатком такого конденсатоотводчика является необходимость снабжения его источником охлаждающей среды, подаваемой в крышки этого устройства.
Известно устройство, содержащее корпус с входными и выходными каналами, дисковый клапан, размещенный в управляющей камере, на верхней стенке которой установлен ограничитель подъема клапана [3]
Общим недостатком работы вышеуказанных наиболее распространенных конденсатоотводчиков с механическим затвором является то, что протекающий с большой скоростью конденсат вместе со шламом, ржавчиной и другими загрязнениями разрушает уплотнения. Неплотности в конденсатоотводчиках приводят к потере тепла с пролетным паром. Такая потеря имеет место в конденсатоотводчиках даже при их тщательной наладке [4] Этот недостаток устранен в конденсатоотводчиках с гидравлическим затвором, представляющих собой колонки с циркуляционными контурами.
Общим недостатком работы вышеуказанных наиболее распространенных конденсатоотводчиков с механическим затвором является то, что протекающий с большой скоростью конденсат вместе со шламом, ржавчиной и другими загрязнениями разрушает уплотнения. Неплотности в конденсатоотводчиках приводят к потере тепла с пролетным паром. Такая потеря имеет место в конденсатоотводчиках даже при их тщательной наладке [4] Этот недостаток устранен в конденсатоотводчиках с гидравлическим затвором, представляющих собой колонки с циркуляционными контурами.
Известно устройство, принятое за прототип, состоящее из смесителя, соединенного подъемной и опускными трубами с сепаратором.
Конденсатоотводчик снабжен соплом Лаваля, на входе сообщенным с коллектором подачи пара. Во входной части сопла Лаваля выполнены тангенциальные каналы, выходная часть сопла размещена в нижней части смесителя и снабжена сквозными отверстиями.
В смесителе между соплами и подъемной трубой установлена коническая обечайка, большее основание которой жестко укреплено на внутренней поверхности смесителя. Отвод конденсата осуществляется с помощью патрубка, установленного на сепараторе [5]
Достоинством такого устройства является простота изготовления, так как в нем отсутствуют движущиеся элементы, недостатком обязательное условие, чтобы давление греющего пара было больше давления той среды, куда отводится конденсат.
Достоинством такого устройства является простота изготовления, так как в нем отсутствуют движущиеся элементы, недостатком обязательное условие, чтобы давление греющего пара было больше давления той среды, куда отводится конденсат.
После вытеснения конденсата в корпусе конденсатоотводчика устанавливается давление, соответствующее давлению пара, при этом до тех пор, пока пар не сконденсируется, поступление конденсата в конденсатоотводчик невозможно, что влечет за собой периодическое накопление конденсата в нагревательной камере теплопотребляющего аппарата и связанное с этим частичное недоиспользование поверхности нагрева [6]
В предлагаемом изобретении в известном конденсатоотводчике, содержащем смеситель, соединенный своими нижней и верхней частями с сепаратором, сопло Лаваля, расположенное в нижней части смесителя, и патрубки отвода конденсата и тангенциального подвода пара и причем последний размещен на входе в сопло Лаваля, конденсатоотводчик снабжен заключенным в корпус газоструйным щелевым эжектором, активное сопло которого соединено со входом в сопло Лаваля, тангенциальным патрубком для подвода конденсата, установленным на входе в сопло Лаваля и соединенным посредством трубопровода с вентилем с нижней частью смесителя и сушильным барабаном, нижняя часть которого соединена с пассивным соплом эжектора, а средняя часть с сепаратором.
В предлагаемом изобретении в известном конденсатоотводчике, содержащем смеситель, соединенный своими нижней и верхней частями с сепаратором, сопло Лаваля, расположенное в нижней части смесителя, и патрубки отвода конденсата и тангенциального подвода пара и причем последний размещен на входе в сопло Лаваля, конденсатоотводчик снабжен заключенным в корпус газоструйным щелевым эжектором, активное сопло которого соединено со входом в сопло Лаваля, тангенциальным патрубком для подвода конденсата, установленным на входе в сопло Лаваля и соединенным посредством трубопровода с вентилем с нижней частью смесителя и сушильным барабаном, нижняя часть которого соединена с пассивным соплом эжектора, а средняя часть с сепаратором.
На фиг.1. изображена принципиальная схема конденсатоотводчика.
Конденсатоотводчик состоит из смесителя 1, закрытого с обоих торцов, разделенного внутри перегородкой 2, имеющей на периферии отверстия 3. По оси смесителя 1 установлено сопло Лаваля 4, имеющее на начальном цилиндрическом участке тангенциальный завихритель 5 с входным регулирующим вентилем 6. В нижней части цилиндрического участка расположен тангенциальный завихритель 7 с входным регулирующим вентилем 8, расположенным на трубопроводе, соединенном с нижней боковой частью смесителя 1. Рабочее сопло 9, камера смешения 10 и диффузор 11 в щелевом эжекторе образуются профилированными тарелками 12 и 13, установленными на некотором расстоянии друг от друга. Соединение тарелок 12 и 13 рабочего сопла 9 осуществляется во входном сечении цилиндрического участка сопла Лаваля. Щелевой эжектор заключен в цилиндрический корпус с закрытой верхней крышкой 15 и нижним дном 16. По оси в верхнюю крышку 15 установлен входной цилиндрический участок, а в нижнее дно 16 по оси установлен один конец трубопровода 17, другой конец которого соединен с выходом сушильного барабана 18, вращающегося на опорах 19 и 20. Выходной конец трубопровода 17 заканчивается сопловым насадкам 21, опущенным на дно сушильного барабана 18. В нижнее дно 16 цилиндрического корпуса по периферии установлен патрубок 22 для слива конденсата. В нижнюю боковую часть смесителя 1 установлен один конец цилиндрического сепаратора 23, другой конец которого введен по оси в верхнюю торцевую часть смесителя 1. В цилиндрическую часть сепаратора 23 тангенциально установлен патрубок с вентилем 24, размещенный на трубопроводе 25, соединяющем вход сушильного барабана 18 с сепаратором 23.
Конденсатоотводчик работает следующим образом.
Рабочий влажный пар поступает под давлением через тангенциальный завихритель 5 в цилиндрическую часть сопла Лаваля 4, закручивается и разделяется на два потока. Первый поток проходит в конфузорную часть 4, в которой при уменьшении радиуса "r" за счет сохранения момента количества движения "mV•r ", увеличивается центробежная скорость "V" потока. При этом формируется вращающийся кольцевой поток пара и конденсата. Выведенный поток из расширяющейся части сопла Лаваля 4 поступает на поверхность перегородки в пространство смесителя 1, в котором скорость потока пара падает за счет торможения, при этом пар частично конденсируется. В смесителе 1 формируется обратный вихревой поток, движущийся навстречу основному по внутренней боковой поверхности, отжимает факел основного потока к стенке и по оси смесителя 1 входит в отверстие перегородки 2, где расширяется и ударяется в торцевую поверхность смесителя 1, вторично тормозится, конденсируется и поступает в трубопровод цилиндрического сепаратора 23. Капли конденсата за счет центробежных сил поступает в зону разрежения, расположенную в нижней части смесителя 1. По отверстиям в перегородке 2 конденсат поступает вовнутрь смесителя 1, где и осаждается в нижней части. Сухой пар по трубопроводу 25 подается во внутреннюю часть сушильного барабана 18, вращающегося на опорах 19 и 20. При передаче тепла через стенку влажному материалу, проходящему по наружной поверхности, пар конденсируется и собирается в виде пленки в нижней части барабана 18.
Второй поток пара проходит в нижнюю часть и закрученным потоком вытекает через рабочее сопло 9 в камеру смешения 10, в которой создается зона разрежения. За счет перепада давления создаваемого на обоих концах трубопровода 17, соединяющего барабан 18 с камерой смешения 10, щелевого эжектора, конденсатная пленка из барабана передавливается в область эжектора. Энергией струи пара, вытекающей из рабочего сопла 9, конденсат подсасывается из камеры смешения 10, проходит диффузор и выбрасывается на боковую поверхность цилиндрического корпуса 14. Конденсат на нижней части смесителя 1 по трубопроводу через тангенциальный завихритель 7 подмешивается во второй поток пара, образуя двухфазное газожидкостное течение. Количество подаваемого конденсата регулируется вентилем 8. За счет интенсификации тепломассобмена парожидкостная среда охлаждается и конденсат сливается в нижнюю часть цилиндрического корпуса, откуда через патрубок 22 сливается в конденсатопровод. Процесс интенсификации работы конденсатоотводчика определяется двумя факторами. Во-первых, частично пар, поступающий через тангенциальный завихритель 5, конденсируется на внутренней цилиндрической поверхности сопла Лаваля 4 за счет того, что он смешивается с холодной пленкой конденсата, поступающего через тангенциальный завихритель 7. При этом в потоке пара возникают многочисленные центры конденсации, которые ускоряют переход пара в состояние конденсата.
Во-вторых, получаемый в результате смешения двухфазный поток при истечении через рабочее сопло 9 щелевого эжектора турбулизируется. В результате создания нестационарного истечения струи из рабочего сопла эжекционная способность ее увеличивается по сравнению с истечением только пара. Эжектор с двухфазным активным потоком в широком диапазоне режимных параметров эффективнее парового (газового) [7]
В отличие от прототипа, в котором сопло Лаваля является цилиндрическим эжектором, в предлагаемом изобретении применяется щелевой эжектор, образованный профилированными тарелками 12 и 13, установленными на некотором расстоянии друг от друга. Щелевой эжектор является "интегральным" эжектором, как бы объединяющим предельное число радиально установленных эжекторов, размещенных в одной плоскости. Это дает резкое, в 3-4 раза снижение габаритов эжектора по сравнению с цилиндрическим эжектором, использующим сопло Лаваля.
В отличие от прототипа, в котором сопло Лаваля является цилиндрическим эжектором, в предлагаемом изобретении применяется щелевой эжектор, образованный профилированными тарелками 12 и 13, установленными на некотором расстоянии друг от друга. Щелевой эжектор является "интегральным" эжектором, как бы объединяющим предельное число радиально установленных эжекторов, размещенных в одной плоскости. Это дает резкое, в 3-4 раза снижение габаритов эжектора по сравнению с цилиндрическим эжектором, использующим сопло Лаваля.
В отличие от прототипа предлагаемый конденсатоотводчик может работать при условии, если давление греющего пара на входе в сопло Лаваля меньше (в 1,5-2 раза) давления пара, на которое рассчитана работа барабанной сушилки.
Таким образом, предлагаемое изобретение обеспечивает увеличение производительности конденсатоотводчиков на 30-40 по сравнению с прототипом.
Применение конденсатоотводчиков позволяет получить в народном хозяйстве большой экономический эффект, так как стоимость энергетических затрат в себестоимости продукции весьма значительна. Например, удельный вес стоимости тепловой энергии в себестоимости продукции составляет в производстве целлюлозы 4,0- 4,9 бумаги 11,3% синтетического дубителя 14,5 этилового спирта 60,7 в химико-фотографической промышленности 10 [8]
Разработка устройства находится в стадии научно-исследовательских работ.
Разработка устройства находится в стадии научно-исследовательских работ.
В 1994 году намечается испытание макетного образца. Использование изобретение намечено на ПО "Тасма" в 1994-1995 г.г.
Claims (1)
- Конденсатоотводчик, содержащий смеситель, соединенный своими нижней и верхней частями с сепаратором, сопло Лаваля, расположенное в нижней части смесителя, и патрубки отвода конденсата и тангенциального подвода пара, причем последний размещен на входе в сопло Лаваля, отличающийся тем, что конденсатоотводчик снабжен заключенным в корпус газоструйным щелевым эжектором, активное сопло которого соединено с входом в сопло Лаваля, тангенциальным патрубком для подвода конденсата, установленным на входе в сопло Лаваля и сообщенным посредством трубопровода с вентилем с нижней частью смесителя и сушильным барабаном, нижняя часть которого соединена с пассивным соплом эжектора, а средняя часть с сепаратором.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93017592A RU2061926C1 (ru) | 1993-04-05 | 1993-04-05 | Конденсатоотводчик |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93017592A RU2061926C1 (ru) | 1993-04-05 | 1993-04-05 | Конденсатоотводчик |
Publications (2)
Publication Number | Publication Date |
---|---|
RU93017592A RU93017592A (ru) | 1995-12-10 |
RU2061926C1 true RU2061926C1 (ru) | 1996-06-10 |
Family
ID=20139773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU93017592A RU2061926C1 (ru) | 1993-04-05 | 1993-04-05 | Конденсатоотводчик |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2061926C1 (ru) |
-
1993
- 1993-04-05 RU RU93017592A patent/RU2061926C1/ru active
Non-Patent Citations (1)
Title |
---|
Авторское свидетельство СССР N 1186890, кл. F 16 T 1/10, опублик. 1985. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RO108538B1 (ro) | Procedeu si instalatie pentru schimbul de substanta intre medii lichide si gazoase | |
JPS6119347Y2 (ru) | ||
RU2061926C1 (ru) | Конденсатоотводчик | |
CN104088677B (zh) | 一种多级冲动式汽轮机的机内蒸汽再热器 | |
RU2073167C1 (ru) | Конденсатоотводчик | |
RU2177105C2 (ru) | Конденсатоотводчик | |
RU2629104C2 (ru) | Устройство пароводяного струйного теплонагревателя | |
RU2012829C1 (ru) | Регенеративный подогреватель питательной воды эжекторного типа | |
RU2282115C1 (ru) | Теплогенератор гидравлический | |
RU2011918C1 (ru) | Конденсатоотводчик | |
SU1474338A1 (ru) | Ступень струйного аппарата | |
RU2038121C1 (ru) | Газосепаратор | |
RU2159903C1 (ru) | Устройство осушки газа | |
RU2001289C1 (ru) | Цилиндр паровой турбины | |
RU2131555C1 (ru) | Деаэратор (тепломассообменник) | |
JPS59185987A (ja) | 圧力調整可能な区画を有する復水器 | |
KR930007266B1 (ko) | 증기직접가열형 소음기 | |
SU1019197A1 (ru) | Установка дл сушки химических продуктов | |
RU2342607C1 (ru) | Гидротеплогенератор вихревого типа | |
SU1681875A1 (ru) | Выпарной аппарат | |
RU2069829C1 (ru) | Контактный теплоутилизатор | |
SU798435A1 (ru) | Осушитель | |
SU1099193A1 (ru) | Вихрева труба | |
US3010702A (en) | Heat exchange for continuous throughflow of two media | |
RU2064146C1 (ru) | Контактный теплообменник |