RU2059212C1 - Измеритель температуры - Google Patents

Измеритель температуры Download PDF

Info

Publication number
RU2059212C1
RU2059212C1 SU925033914A SU5033914A RU2059212C1 RU 2059212 C1 RU2059212 C1 RU 2059212C1 SU 925033914 A SU925033914 A SU 925033914A SU 5033914 A SU5033914 A SU 5033914A RU 2059212 C1 RU2059212 C1 RU 2059212C1
Authority
RU
Russia
Prior art keywords
tape
temperature
container
sides
cable
Prior art date
Application number
SU925033914A
Other languages
English (en)
Inventor
Б.Н. Храмов
П.Н. Романов
В.Н. Комиссаров
Original Assignee
Храмов Борис Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Храмов Борис Николаевич filed Critical Храмов Борис Николаевич
Priority to SU925033914A priority Critical patent/RU2059212C1/ru
Application granted granted Critical
Publication of RU2059212C1 publication Critical patent/RU2059212C1/ru

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Использование: в технике контроля и измерения температуры. Сущность изобретения: измеритель температуры содержит плоскую ленту. Лента представляет структурное переплетение диэлектрических нитей с электрическими проводниками. Проводники расположены с промежутками вдоль оси ленты двумя симметричными полосами. Между полосами с двух сторон ленты расположены датчики температуры. Датчики температуры установлены с равными промежутками с двух сторон ленты по всей ее длине. Каждый датчик температуры размещен в канале контейнера, состоящего из двух частей. Части контейнера расположены с разных сторон ленты и механически соединены. 5 ил.

Description

Изобретение относится к технике контроля и измерения температуры и может быть использовано при изготовлении аппаратуры, контролирующей температуру зерна и зернопродуктов.
Известна термоподвеска ТП-1М для контроля температуры зерна в элеваторе (Сергунов В.С. Дистанционный контроль температуры зерна при хранении. М. Агропромиздат, 1987, с. 56-57, рис. 25). Термоподвеска состоит из головки опорной части и гибкого кабеля-троса, соединяющего датчики (терморезисторы). Кабель имеет семь жил электрических проводников. Каждая жила оплетена хлопчато-бумажной пряжей и двойным слоем стальной оплетки. На определенных участках по длине кабеля к электрическому проводнику присоединены датчики температуры. Поверх всех семи проводников в хлопчатобумажной изоляции и стальной оплетке намотана скрепляющая спираль из бронеленты в один слой.
Использование металла в качестве несущего элемента кабеля имеет ряд недостатков.
Поскольку измерение температуры осуществляется в среде с изменяющимся тепловым режимом тем более, что отдельные части кабеля (термоподвески) некоторое время могут находиться вне массы зернопродуктов, т.е. в воздухе, то на металлической оболочке кабеля за счет разности температур окружающей среды и поверхности возможно "налипание" продукта на отдельных участках кабеля. Это способствует искажению истинных величин показаний датчиков и увеличивает и без того весьма значительную массу кабеля. Кроме того, такая конструкция кабеля создает трудности в процессе транспортировки, строительства объектов и ремонта в процессе эксплуатации.
Наиболее близким к предлагаемому измерителю температуры является кабель-трос для термоподвески (Сергунов В.С. Дистанционный контроль температуры зерна при хранении. М. Агропромиздат, 1987, с. 163, рис. 62). Основу конструкции составляет стальной самонеразматывающийся канат, заключенный в полиэтиленовую оболочку. Вокруг каната располагаются четыре четырехжильных кабеля, чередующиеся с кордами-заполнителями. Датчики устанавливаются в разрывы кордов и присоединяются к электрическим проводникам кабеля. Конструкция покрыта оболочкой из светозащитного полиэтилена.
Наличие металла в составе кабеля и оболочки приводит к большому весу конструкции. Недостатками кабеля-троса также являются большая трудоемкость изготовления, отсутствие механического соединения датчика температуры с элементами кабеля-троса и невозможность ремонта или замены датчика в процессе эксплуатации.
Известные устройства для контроля температуры зерна отличаются большим весом конструкции и низкой технологичностью изготовления.
Задача изобретения снижение массы устройства за счет исключения использования металла и повышение технологичности изготовления за счет использования технологии ткачества.
Для этого измеритель температуры, содержащий датчики температуры, соединенные с электрическими проводниками, в основе содержит плоскую ленту, представляющую структурное переплетение диэлектрических нитей с электрическими проводниками, которые расположены с промежутком вдоль оси ленты двумя симметричными полосами, между которыми расположены с двух сторон ленты датчики температуры, установленные с равными промежутками по всей длине ленты, при этом каждый датчик температуры размещен в канале контейнера, состоящего из двух частей, которые расположены с разных сторон ленты и механически соединены.
Основа измерителя температуры плоская лента выполнена с использованием технологии ткачества, что обеспечивает снижение трудоемкости изготовления. Размещение датчика температуры в металлическом контейнере из теплопроводящего металла исключает передачу механических воздействий на него в процессе эксплуатации. Плотное прилегание поверхности датчика к поверхности контейнера обеспечивает малую инерционность передачи показаний.
Части контейнера соединены между собой винтами, которые проходят через отверстия в ленте. Таким образом датчик защищается от механических воздействий и обеспечивается его неподвижность относительно электрических проводников на ленте и относительно самой ленты.
Вторым элементом устройства является замкнутая по контуру внутренняя оболочка-шланг из диэлектрических нитей, который охватывает ленту и расположенные на ней контейнеры с датчиками по всей длине.
Третьим элементом устройства является наружная оболочка-шланг из диэлектрических нитей, расположенная поверх внутренней оболочки.
Все три элемента устройства механически не связаны между собой и взаимодействие их в процессе эксплуатации осуществляется за счет трения. Поэтому на основной электрический элемент конструкции соединение датчика с электрическими проводами и на сам провод не передается механическое воздействие в процессе перемещения зерновой массы в силосе.
Устройство для измерения температуры зерновой массы внутри силоса за счет использования диэлектрических нитей для изготовления основы устройства обеспечивает резкое снижение веса конструкции за счет исключения использования металла, а использование технологии ткачества значительно снижает трудоемкость изготовления.
На фиг. 1 представлен элемент конструкции, сечение; на фиг. 2 схема расположения датчиков на плоской ленте; на фиг. 3 схема крепления контейнера на ленте; на фиг. 4 схема закрепления ленты с проводами в конусной втулке; на фиг. 5 схема крепления внутренней и наружной оболочек.
Измеритель температуры содержит плоскую ленту 1, представляющую структорное переплетение диэлектрических нитей 2 с электрическими проводниками 3, датчики 4 температуры, внутреннюю оболочку-шланг 5, наружную оболочку-шланг 6.
Плоскую ленту 1 изготавливают методом ткачества и переплетение диэлектрических нитей 2 и электрических проводников в изоляции 3 представляет единую конструкцию. Электрические проводники 3 расположены с двух сторон каркасного слоя из диэлектрических нитей 2 двумя симметричными полосами 7 вдоль ленты с промежутком 8 вдоль оси ленты.
Датчики 4 температуры установлены между симметричными полосами 7 вдоль ленты с равными промежутками по ее длине. Кроме того, датчики расположены с двух сторон ленты. Это обеспечивает равномерное распределение электрических проводников 3 вдоль ленты 1. Каждый датчик 4 температуры размещен в контейнере 9 теплопроводящего материала, который защищает его от механических воздействий в процессе эксплуатации. Контейнер 9 состоит из двух частей, которые расположены с разных сторон ленты 1. Такое конструктивное расположение контейнера 9 увеличивает жесткость конструкции и обеспечивает неподвижность датчика 4 относительно ленты 1. Датчик 4 располагается в канале 10 контейнера 9, плотно касаясь своей поверхностью стенок канала 10, что исключает искажение показаний датчика. Обе части контейнера 9 соединяются двумя винтами 11, которые расположены на концах контейнера вне зоны расположения датчика 4 температуры. Для прохождения винтов 11 в ленте 1 имеются отверстия 12. Поскольку лента 1 изготавливается из полиэфирных нитей, то отверстие 12 может быть изготовлено тепловым способом с оплавлением краев по периферии отверстия, что обеспечивает монолитность конструкции ленты 1.
В качестве датчика 4 температуры может использоваться, например, термосопротивление с номинальной величиной сопротивления постоянному току 100-120 Ом.
Плоскую ленту 1 с контейнерами 9 и датчиками 4 по всей длине ленты охватывает внутренняя оболочка 5 шланг из диэлектрических нитей. Поверх внутренней оболочки 5 располагается наружная оболочка 6 шланг из диэлектрических нитей.
Крепление измерителя температуры может быть осуществлено следующим образом.
Плоская лента с затканными в нее электрическими проводниками в изоляции со стороны выводов проводов защемлена между двумя плоскостями 13 разрезной конусной втулки 14 с наружной образующей поверхностью 15. Плотное соединение поверхностей 13 обеспечивается креплением винтами 16. На конусную поверхность 15 втулки 14 надета внутренняя оболочка-шланг 5. Втулка 14 вместе с оболочкой-шлангом 5 установлена в промежуточную втулку 17, по окружности торца которой имеются крепежные отверстия 18. Плита 19 опирается на втулку 14 и с помощью винтов 20 выбирает зазор между конусными поверхностями 15 и 21 соответственно втулок 14 и 17 и внутренней оболочкой-шлангом 5, чем обеспечивается неподвижное соединение. Аналогичным способом осуществляется крепление наружной оболочки-шланга 6, при этом используют промежуточную втулку 17 с конусной поверхностью 22, наружную втулку 23 с конусной поверхностью 24, плиту 25 с винтами 26. Соединитель 27 установлен на плиту 19 для обеспечения подвключения измерительного прибора.

Claims (1)

  1. ИЗМЕРИТЕЛЬ ТЕМПЕРАТУРЫ, содержащий датчики температуры, соединенные с электрическими проводниками, отличающийся тем, что в его основе лежит плоская лента, представляющая структурное переплетение диэлектрических нитей с электрическими проводниками, которые расположены с промежутком вдоль оси ленты двумя симметричными полосами, между которыми с двух сторон ленты расположены датчики температуры, установленные с равными промежутками по всей ее длине, при этом каждый датчик температуры размещен в канале контейнера, состоящего из двух частей, которые расположены с разных сторон ленты и механически соединены.
SU925033914A 1992-03-24 1992-03-24 Измеритель температуры RU2059212C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU925033914A RU2059212C1 (ru) 1992-03-24 1992-03-24 Измеритель температуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU925033914A RU2059212C1 (ru) 1992-03-24 1992-03-24 Измеритель температуры

Publications (1)

Publication Number Publication Date
RU2059212C1 true RU2059212C1 (ru) 1996-04-27

Family

ID=21600125

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925033914A RU2059212C1 (ru) 1992-03-24 1992-03-24 Измеритель температуры

Country Status (1)

Country Link
RU (1) RU2059212C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сергунов. В.С. Дистанционный контроль температуры зерна при хранении. М.: Агропромиздат, 1987, с. 56-57, рис.25, с.163, рис.62. *

Similar Documents

Publication Publication Date Title
FI89851C (fi) Avlaenkbart, flexibelt, elektriskt uppvaermningselement
US4523086A (en) Flexible electrical thermal element
CA2297376C (en) Detection of damage to the rope sheath of a synthetic fiber rope
CA1046319A (en) Optical fibre communications cable
US4392714A (en) Overhead power cable having light conducting fibers arranged in its interior
EP0256704B1 (en) Optical cables
US5120905A (en) Electrocarrier cable
US10249407B2 (en) Power supply cable for planes on the ground
FI108329B (fi) Sähkökuumennusjohdin
NO871921L (no) Endeloes stropp for loefting av last.
US4070911A (en) Braided tape including carrier means
US4541970A (en) Method for fabricating a cable core including optical fibers
EP0200104B1 (en) Composite overhead stranded conductor
RU2059212C1 (ru) Измеритель температуры
JPS59132588A (ja) 電気的に寸断可能な可撓性加熱又は測温素子
US4408088A (en) Aramid reinforced thermocouple cable
US3365534A (en) Coaxial cable and method of making
KR102072402B1 (ko) 온도측정장치 및 온도측정장치의 제조방법
EP0469343A1 (fr) Câble électrique coaxial à fibres optiques
RU52247U1 (ru) Гибкий грузонесущий кабель
US20010038738A1 (en) Ground wire for transmission system
CN116009170B (zh) 一种adss光缆融冰系统
CN113782263B (zh) 海底电缆及制备方法
CN206741987U (zh) 一种可测温、加热光电传输复合缆
SU1012353A1 (ru) Электрический кабель