RU2055429C1 - Устройство для уф-предыонизации в импульсном лазере - Google Patents

Устройство для уф-предыонизации в импульсном лазере Download PDF

Info

Publication number
RU2055429C1
RU2055429C1 SU5064446A RU2055429C1 RU 2055429 C1 RU2055429 C1 RU 2055429C1 SU 5064446 A SU5064446 A SU 5064446A RU 2055429 C1 RU2055429 C1 RU 2055429C1
Authority
RU
Russia
Prior art keywords
substrate
dielectric plate
electrodes
additional electrodes
dielectric
Prior art date
Application number
Other languages
English (en)
Inventor
В.М. Борисов
Ю.Ю. Стапанов
О.Б. Христофоров
Original Assignee
Научно-производственное внедренческое предприятие "Лазерная лаборатория"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственное внедренческое предприятие "Лазерная лаборатория" filed Critical Научно-производственное внедренческое предприятие "Лазерная лаборатория"
Priority to SU5064446/25 priority Critical patent/RU2055429C1/ru
Application granted granted Critical
Publication of RU2055429C1 publication Critical patent/RU2055429C1/ru
Publication of RU5064446A publication Critical patent/RU5064446A/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Использование: в квантовой электронике, электроразрядных импульсных лазерах ТЕ-типа с предыонизацией. Сущность изобретения: устройство содержит поджигающий электрод, который размещен вдоль плоской диэлектрической пластины между дополнительными электродами на равном расстоянии от них и соединен с полупрозрачным электродом. Оба дополнительных электрода соединены с подложкой, которая выполнена с каналами для циркуляции охлаждающей жидкости. К полупрозрачному и сплошному электродам подсоединены две последовательно соединенные емкости, общая точка которых соединена с подложкой через проходную емкость. Дополнительные электроды размещены на поверхности диэлектрической пластины, обращенной к подложке. Введен протяженный диэлектрический корпус П-образного сечения, на котором размещены прозрачный электрод и охлаждаемая подложка, подсоединение емкостей к которым осуществляется одним рядом штыревых токовводов, расположенным вдоль диэлектрического корпуса. 2 з. п. ф-лы, 3 ил.

Description

Изобретение относится к квантовой электронике и может быть использовано в системах возбуждения импульсного объемного разряда, преимущественно в мощных широкоапертурных импульсно-периодических (ИП) эксимерных и других лазерах.
Известно устройство для ультрафиолетовой (УФ) предыонизации в импульсном лазере [1] осуществляемой УФ-излучением вспомогательного незавершенного скользящего разряда (СР), зажигаемого при подаче через неуправляемый разрядник анодного напряжения на металлическую подложку с размещенным на ней диэлектрическим слоем, на поверхности которого расположен перфорированный катод лазера.
Недостатком указанного устройства является малый, ≅ 107электронов/см3, уровень предыонизации, создаваемый слаботочным разрядом по поверхности диэлектрика в отверстиях перфорированного катода, ток которого ограничен током зарядки емкости диэлектрического слоя. Это приводит к снижению энергетических характеристик лазера. Кроме того, затруднен переход к стабильной работе в ИП-режиме работы из-за наличия дополнительного неуправляемого разрядника.
Этих недостатков частично лишено устройство для УФ-предыонизации в электроразрядном импульсном лазере [2] осуществляемой излучением от ряда искр, автоматически зажигаемых при импульсной зарядке шунтирующих конденсаторов, подключенных к электродам лазера через искровые промежутки, размещенные под сетчатым электродом лазера.
В указанном устройстве неоднородность предыонизации из-за дискретности искровых каналов приводит к быстрой потере устойчивости разряда, что снижает энергию генерации лазера и его КПД. Увеличение энергии генерации лазера за счет увеличения апертуры объемного разряда затруднено из-за сложности создания искровых матриц большой площади.
Прототипом изобретения является устройство для УФ-предыонизации в импульсном лазере, содержащее расположенные вдоль оси лазера протяженные сплошной и полупрозрачный электроды, плоскую диэлектрическую пластину, расположенную позади рабочей поверхности полупрозрачного электрода и размещенную на металлической подложке, и два дополнительных электрода, расположенных на поверхности диэлектрической пластины, один из которых соединен с подложкой [3]
Такое устройство предназначено для использования в мощных широкоапертурных импульсных лазерах и позволяет получать более высокий по сравнению с аналогами уровень предыонизации.
В этом устройстве СР по поверхности диэлектрика осуществляется конкретным числом поверхностных сильноточных искр, определяемым многоэлементной металлической структурой между протяженными дополнительными электродами на поверхности диэлектрической пластины. В сочетании с отсутствием системы охлаждения это приводит к малому ресурсу устройства из-за теплового разрушения диэлектрика или его металлизации при ИП- режиме работы. Дискретность СР вызывает также необходимость осуществления задержки между основными и вспомогательными разрядами для выравнивания начальной неоднородности предыонизации. Это обуславливает применение схемы питания СР с отдельным коммутатором, что усложняет устройство при эксплуатации в МП-режиме. Недостатком является также большие габариты системы формирования СР, так как значительная часть площади диэлектрической пластины, ≈ 50% используется в качестве изоляции для предотвращения паразитных поверхностных пробоев. Это не позволяет приблизить вспомогательный разряд к сетчатому катоду, через который осуществляется предыонизации, и наряду с задержкой между основным и вспомогательным разрядами приводит к снижению уровня предыонизации в активном объеме лазера и уменьшению его энергии генерации и КПД.
Технической задачей изобретения является расширение диапазона режима работы устройства за счет достижения высокого ресурса при большой частоте следования импульсов, упрощения его конструкции и повышения уровня предыонизации.
Указанная задача может быть осуществлена устройством новой конструкции, содержащим расположенные вдоль оси лазера протяженные сплошной и полупрозрачный электроды, плоскую диэлектрическую пластину, расположенную позади рабочей поверхности полупрозрачного электрода и размещенную на металлической подложке, и два дополнительных электрода, расположенных на поверхности диэлектрической пластины, один из которых соединен с подложкой. Отличие устройства заключается в том, что оно содержит поджигающий электрод, который размещен вдоль плоской диэлектрической пластины между дополнительными электродами на равном расстоянии от них и соединен с полупрозрачным электродом, оба дополнительных электрода соединены с подложкой, которая выполнена с каналами для циркуляции охлаждающей жидкости, причем к полупрозрачному и сплошному электродам подсоединены две последовательно соединенных емкости, общая точка которых соединена с подложкой через проходную емкость.
Отличие устройства может состоять и в том, что дополнительные электроды размещены на поверхности диэлектрической пластины, обращенной к подложке.
Отличие устройства может состоять также в том, что в него введен протяженный диэлектрической корпус П-образного сечения, на котором закреплены полупрозрачный электрод и охлаждаемая подложка, и подсоединение емкостей к полупрозрачному электроду и подложке осуществляется одним рядом штыревых токовводов, расположенным вдоль диэлектрического корпуса.
Поскольку перечисленные выше аналоги и прототип не содержат признаков, сходных с признаками, отличающими изобретение от прототипа, и неизвестны технические решения в других областях, в которых эти признаки используются по данному назначению, то заявленное техническое решение обладает существенными отличиями.
При выполнении устройства в указанном виде обеспечивается развитие СР по всей поверхности диэлектрической пластины в виде сплошных плазменных слоев, что наряду с выполнением металлической подложки с каналами для циркуляции жидкости, охлаждающей диэлектрик, обеспечивает высокий ресурс работы устройства в ИП-режиме. Введение последовательно соединенных емкостей, подключенных к сплошному и полупрозрачному электродам, общая точка которых соединена посредством проходной емкости с подложкой, обуславливает автоматическое зажигание вспомогательных СР, осуществляющих УФ-предыонизацию, при подаче импульсного напряжения на основной разрядный промежуток лазера, что упрощает конструкцию устройства и его эксплуатацию при большой частоте следования импульсов. Путем выбора величины проходной емкости и соотношения величин двух указанных емкостей осуществляется выбор величин энерговклада в СР и амплитуды напряжения на нем. За счет этого обеспечиваются оптимальный уровень предыонизации активного объема лазера и высокий ресурс работы источника предыонизации. Достигается компактность электродной системы формирования вспомогательных СР, так как исключается необходимость увеличения ее габаритов для устранения паразитных поверхностных пробоев. Это позволяет приблизить источник предыонизации к основному разрядному промежутку, что наряду с отсутствием задержки между основным и вспомогательным разрядами повышает уровень предыонизации и энергетические характеристики лазера.
Размещение дополнительных электродов на поверхности диэлектрической пластины, обращенной к подложке, повышает устойчивость СР, снижает требования к юстировке его электродной системы и позволяет высокоэффективно использовать предложенное устройство при небольших поперечных размерах диэлектрической пластины, ≅ 4 см, в лазерах с небольшими апертурами, ≅ 4х4 см2.
Введение протяженного диэлектрического корпуса П-образного сечения, на котором закреплены полупрозрачный электрод и охлаждаемая подложка, подсоединение емкостей к которым производится посредством одного ряда штыревых токовводов, расположенного вдоль корпуса, обеспечивают совмещение полупрозрачного электрода и источника предыонизации в единый компактный электродный узел. Кроме того, при использовании полупрозрачного электрода в качестве высоковольтного электрода это позволяет минимизировать индуктивности вспомогательного и основного разрядных контуров, что обеспечивает достижение высокого КПД лазера.
На фиг.1 схематично изображено устройство для УФ-предыонизации в импульсном лазере; на фиг. 2 то же устройство при расположении дополнительных электродов на поверхности диэлектрической пластины, обращенной к подложке; на фиг.3 устройство для УФ-предыонизации с ди-электрическим корпусом и рядом штыревых токовводов.
Устройство содержит импульсный источник 1 питания, подключенный к сплошному электроду 2 и полупрозрачному электроду 3 лазера, к которым подсоединены последовательно соединенные емкости 4, 5, причем общая точка емкостей 4, 5 соединена проходной емкостью 6 с металлической подложкой 7, диэлектрическую пластину 8, на поверхности которой размещены соединенный с полупрозрачным электродом 3 поджигающий электрод 9 и два дополнительных электрода 10, 11, соединенных с подложкой 7, выполненной с каналами для циркуляции охлаждаемой жидкости 12.
На фиг.2 дополнительные электроды 10,11 размещены на поверхности диэлектрической пластины 8, обращенной к подложке 7.
На фиг. 3 полупрозрачный электрод 3 и охлаждаемая подложка 7 закреплены на протяженном диэлектрическом корпусе 13 и распределенные вдоль полупрозрачного электрода емкости 5 и 6 подсоединены соответственно рядом штыревых токовводов 14 и 15 к полупрозрачному электроду 3 и подложке 7. Установка полупрозрачного электрода 3 на корпусе 13 осуществляется посредством токопроводящих креплений 16, соединенных с токовводами 14.
Устройство для УФ-предыонизации в импульсном лазере работает следующим образом.
При включении импульсного источника 1 питания между сплошным и полупрозрачными электродами 2 и 3 начинает нарастать напряжение. Посредством емкостного делителя, образованного емкостями 4, 5, через проходную емкость 6 часть потенциала анода передается на металлическую подложку 7. По поверхности диэлектрической пластины 8, обращенной к основному разрядному промежутку, развивается волна ионизации, после пробега которой от поджигающего 9 к дополнительным 10, 11 электродам между ними зажигаются поверхностные СР. При этом происходит импульсная зарядка проходной емкости 6. СР по поверхности диэлектрической пластины образуют плазменные слои, служащие источником УФ-излучения, которое через полупрозрачный электрод 3 осуществляет предыонизацию основного разрядного промежутка. После того, как напряжение между сплошным 2 и полупрозрачным 3 электродами достигает значения пробивного напряжения, происходит основной объемный разряд между ними, что позволяет получить генерацию. Охлаждающая жидкость 12 при циркуляции осуществляет отвод энергии, идущий на нагрев диэлектрической пластины 8 при большой частоте следования импульсов.
Диэлектрический корпус (13) П-образного сечения (фиг.3) обеспечивает изоляцию между источником УФ-излучения и полупрозрачным электродом, а также неизменность их взаимного расположения во время работы устройства. При этом энерговклад во вспомогательный СР осуществляется по малоиндуктивному разрядному контуру, включающему расположенные в один ряд токовводы 14, 15 и токопроводящие крепления 16 полупрозрачного электрода. Из нескольких токовводов 15, подсоединенных к подложке 7, два выполняются полыми для подвода и вывода охлаждающей жидкости.
По сравнению с прототипом устройство для УФ-предыонизации в импульсном лазере приобретает новые положительные качества.
Введение поджигающего электрода, расположенного на поверхности диэлектрической пластины вдоль нее между дополнительными электродами на равном расстоянии от них, и соединение каждого дополнительного электрода с металлической подложкой обуславливают простоту и компактность системы формирования СР, так как исключается необходимость увеличения ее габаритов для избежания паразитных поверхностных пробоев. Это позволяет приблизить вспомогательный разряд к перфорированному катоду и увеличивает уровень предыонизации. При этом в отличие от прототипа при выборе достаточно малой толщины диэлектрической пластины достигаются полное заполнение поверхности диэлектрика между поджигающим и дополнительными электродами плазмой СР и однородное предварительное УФ-облучение активного объема лазера. Это исключает необходимость значительной, ≈ 1 мкс, задержки между основным и вспомогательным разрядами, приводящей в прототипе к уменьшению концентрации предварительных электронов, особенно значительному в лазерах на галогенидах инертных газов, газовые смеси которых характеризуются высокой скоростью прилипания электронов к донорам галогенов. Это позволяет повысить уровень предыонизации и энергетические характеристики лазера при снижении энерговклада во вспомогательный СР. Кроме того, осуществление СР в виде сплошных плазменных листов между поджигающим и дополнительными электродами в отличие от дискретных каналов в прототипе и выполнение металлической подложки с каналами для циркуляции охлаждающей жидкости уменьшают локальные тепловые нагрузки на диэлектрике, дополнительных и поджигающих электродах, что увеличивает ресурс работы устройства в ИП-режиме из-за устранения теплового разрушения диэлектрика и его металлизации материалом электродов.
Применение последовательно соединенных емкостей и проходной емкости в предложенном виде обеспечивает автоматическое зажигание вспомогательного разряда при подаче импульса высокого напряжения на основной разрядный промежуток, что упрощает конструкцию устройства и его эксплуатацию в ИП-режиме.
Кроме того, осуществляется возможность ввода энергии в СР при оптимальных тепловых и электрических нагрузках ди-электрической пластины, обеспечивающие высокий, более 108 импульсов, ресурс работы устройства в ИП-режиме.
Размещение дополнительных электродов на поверхности диэлектрической пластины, обращенной к охлаждаемой подложке, повышает однородность распределения энерговклада в плазму СР, которая может быть ухудшаться при малых поперечных размерах диэлектрической пластины. Это позволяет использовать предложенное устройство при небольших апертурах основного объемного разряда.
Введение протяженного диэлектрического корпуса П-образного сечения, на котором закреплены полупрозрачный электрод и охлаждаемая подложка, подсоединение емкостей к которым осуществляется посредством одного ряда штыревых токовводов, обеспечивает компактность устройства и удобcтво его использования в лазере. При использовании полупрозрачного электрода в качестве высоковольтного обеспечивается возможность уменьшения индуктивностей основного и вспомогательного разрядных контуров.
Использование предложенного устройства для УФ-предыонизации в импульсном лазере обеспечивает по сравнению с прототипом следующие основные преимущества, определяющие расширение диапазона режимов работы устройства: достижение высокого ресурса работы при большой частоте следования импульсов, увеличение уровня предыонизации в активном объеме лазера, повышение энергетических характеристик лазера, упрощение конструкции устройства и его эксплуатации в ИП-режиме работы, повышение устойчивости объемного разряда при большой частоте следования импульсов.
В настоящее время предложенное устройство испытано для УФ-предыонизации ИП-эксимерных KrF-, XeCl-лазеров со средней мощностью излучения 0,1-1 кВт. Проводятся их ресурсные испытания. При частоте следования импульсов 80 Гц после 2 х 107 импульсов не наблюдалось каких-либо ухудшений в работе предложенного устройства в составе KrF-лазера. Применение предложенного устройства позволило получить на молекуле XeCl* энергию генерации 20 Дж.

Claims (3)

1. УСТРОЙСТВО ДЛЯ УФ-ПРЕДЫОНИЗАЦИИ В ИМПУЛЬСНОМ ЛАЗЕРЕ, содержащее расположенные вдоль оси лазера протяженные сплошной и полупрозрачный электроды, плоскую диэлектрическую пластину, расположенную позади рабочей поверхности полупрозрачного электрода и размещенную на металлической подложке, и два дополнительных электрода, расположенных на поверхности диэлектрической пластины, один из которых соединен с подложкой, отличающееся тем, что устройство содержит поджигающий электрод, который размещен вдоль плоской диэлектрической пластины между дополнительными электродами на равном расстоянии от них и соединен с полупрозрачным электродом, оба дополнительных электрода соединены с подложкой, которая выполнена с каналами для циркуляции охлаждающей жидкости, причем к полупрозрачному и сплошному электродам подсоединены две последовательно соединенные емкости, общая точка которых соединена с подложкой через проходную емкость.
2. Устройство по п. 1, отличающееся тем, что дополнительные электроды размещены на поверхности диэлектрической пластины, обращенной к подложке.
3. Устройство по пп.1 и 2, отличающееся тем, что введен протяженный диэлектрический корпус П-образного сечения, на котором закреплены полупрозрачный электрод и охлаждаемая подложка, подсоединение емкостей к которым осуществляется одним рядом штыревых токовводов, расположенным вдоль диэлектрического корпуса.
SU5064446/25 1992-10-06 1992-10-06 Устройство для уф-предыонизации в импульсном лазере RU2055429C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5064446/25 RU2055429C1 (ru) 1992-10-06 1992-10-06 Устройство для уф-предыонизации в импульсном лазере

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5064446/25 RU2055429C1 (ru) 1992-10-06 1992-10-06 Устройство для уф-предыонизации в импульсном лазере

Publications (2)

Publication Number Publication Date
RU2055429C1 true RU2055429C1 (ru) 1996-02-27
RU5064446A RU5064446A (ru) 1996-12-27

Family

ID=21614340

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5064446/25 RU2055429C1 (ru) 1992-10-06 1992-10-06 Устройство для уф-предыонизации в импульсном лазере

Country Status (1)

Country Link
RU (1) RU2055429C1 (ru)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1. Заявка Японии N 62-181481, кл. H 01S 3/09, 1987. *
2. Баранов В.Ю. и др. Электроразрядные эксимерные лазеры. М.: Энергоатомиздат, 1988, с.116. *
3. Патент США N 4041414, кл. H 01S 3/097, 1973. *

Similar Documents

Publication Publication Date Title
US5247531A (en) Apparatus for preionizing apulsed gas laser
EP0463815B1 (en) Vacuum ultraviolet light source
EP0417649B1 (en) Plasma switch with hollow, thermionic cathode
US4365337A (en) Excitation system for a fast pulsed discharge
US5875207A (en) Discharge arrangement for pulsed gas lasers
US20070041418A1 (en) Pulsed RF high pressure CO2 lasers
RU2446530C1 (ru) Импульсно-периодический газоразрядный лазер
US6389106B1 (en) Method and device for producing extreme ultraviolet and soft X-rays from a gaseous discharge
US5014289A (en) Long life electrodes for large-area x-ray generators
US3524101A (en) Triggering device for spark-gap
US5057740A (en) Photoemissive trigger for backlighted thyratron switches
US3633127A (en) Pulsed laser device with improved discharge circuit
US4317067A (en) Dielectric surface electrical discharge device
Letardi et al. Large area X-ray preionizer for electric discharge lasers
RU2055429C1 (ru) Устройство для уф-предыонизации в импульсном лазере
US5159243A (en) Hollow electrode switch
US5050178A (en) Multichannel pseudo-spark switch and excitation circuit for gas lasers having the switch
US4942337A (en) Spark gap apparatus triggerable by microwave pulse
RU2029423C1 (ru) Способ получения генерации в газовом электроразрядном лазере и газовый электроразрядный лазер
US4788691A (en) Method for the operation of a gas laser and a gas laser operated in accord therewith
RU2017289C1 (ru) Устройство для накачки газового проточного лазера
RU2219626C2 (ru) Нецепной электроразрядный hf(df)-лазер
RU2162263C2 (ru) Устройство для формирования объемного самостоятельного разряда
Frank et al. Low pressure glow discharge switches for high power excimer lasers
RU2141708C1 (ru) Устройство накачки мощного импульсно-периодического газового лазера