RU2049108C1 - Способ обработки поверхностей трения узлов трения - Google Patents

Способ обработки поверхностей трения узлов трения Download PDF

Info

Publication number
RU2049108C1
RU2049108C1 SU5045718A RU2049108C1 RU 2049108 C1 RU2049108 C1 RU 2049108C1 SU 5045718 A SU5045718 A SU 5045718A RU 2049108 C1 RU2049108 C1 RU 2049108C1
Authority
RU
Russia
Prior art keywords
friction
solid lubricant
additive
oleic acid
properties
Prior art date
Application number
Other languages
English (en)
Inventor
С.В. Стребков
А.В. Грамолин
Original Assignee
Белгородский сельскохозяйственный институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Белгородский сельскохозяйственный институт filed Critical Белгородский сельскохозяйственный институт
Priority to SU5045718 priority Critical patent/RU2049108C1/ru
Application granted granted Critical
Publication of RU2049108C1 publication Critical patent/RU2049108C1/ru

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

Сущность изобретения: для улучшения антифрикционных и противоизносных свойств на поверхности трения узлов трения наносят твердосмазочное покрытие толщиной 10 15 мкм и в узел трения вводят минеральное масло, содержащее 0,5 1 мас. присадки, представляющей собой продукт взаимодействия олеиновой кислоты и молибденово-кислого аммония при следующем соотношении компонентов, мас. молибденово-кислый аммоний 20, олеиновая кислота 100. 4 ил. 5 табл.

Description

Изобретение относится к способам обработки поверхностей трения узлов трения и предназначено для снижения механических потерь на трение и увеличения долговечности трущихся сопряжений двигателей внутреннего сгорания, агрегатов и узлов трансмиссии и ходовой части машин.
Антифрикционные свойства масел, выпускаемых промышленностью и используемых в настоящее время, определяются маслянистостью дистиллята. Товарные масла не содержат в своем составе антифрикционных присадок [1] Противоизносные свойства закладываются в основном специальной группой противоизносных присадок.
Снижение трения в сопряжениях не ведет к автоматическому уменьшению износа. Во многих случаях улучшение антифрикционных свойств ведет к росту интенсивности изнашивания поверхностей трения [2] особенно при повышенных нагрузках.
Известна товарная антифрикционная присадка марки "Фриктол" (ТУ 38.401118-83). Данная присадка имеет явно выраженные антифрикционные показатели и низкие противоизносные, однако и они при высоких нагрузках резко ухудшаются.
Известны твердосмазочные материалы, которые уменьшают трение и не ухудшают противоизносных свойств масел при высоких нагрузках, а их эффективность зависит от концентрации. Причем концентрация выше 3-5% не ведет к улучшению трибохарактеристик.
Наибольшее распространение получили добавки на основе дисульфида молибдена [3]
Добавка в виде порошка имеет основной недостаток выпадение в осадок дисульфида молибдена из-за нестабильности суспензии и его фильтрация в системах очистки масла.
Наиболее близким к предлагаемому является использование твердосмазочного материала в виде твердосмазочных покрытий прототип. Антифрикционные и противоизносные свойства поверхностей трения с нанесенным твердосмазочным покрытием зависят от долговечности самого покрытия. Из-за малых толщин наносимого слоя (5-20 мкм) он быстро разрушается при больших нагрузках и их колебаниях. Как правило, покрытия работают в начальный период эксплуатации машины и после их разрушения (изнашивания) трибохарактеристики узлов трения ухудшаются [4]
Целью изобретения является улучшение антифрикционных и противоизносных свойств поверхностей трения узлов трения при смазывании маслами.
Поставленная цель достигается тем, что одновременно с твердосмазочным покрытием, нанесенным на поверхность трения, в период эксплуатации в масло вводится антифрикционная присадка на основе аммония молибденово-кислого и олеиновой кислоты [5]
Данный способ обработки поверхностей трения соответствует критерию "новизна", так как имеет отличие от прототипа применения твердосмазочного покрытия на основе дисульфида молибдена. Таким отличием является использование одновременно с твердосмазочным покрытием на основе дисульфида молибдена присадки на основе аммония молибденово-кислого и олеиновой кислоты, вводимой в масло.
Использование дополнительно присадки на основе аммония молибденово-кислого и олеиновой кислоты позволяет существенно улучшить антифрикционные и противоизносные свойства поверхностей трения узлов трения в режиме малых, средних и высоких нагрузок. Это достигается путем более полной реализации и активизации трех механизмов смазывающего действия: физической адсорбции, хемосорбции и химической реакции, приводящих к их синергизму как на поверхности трения, так и в объеме смазочного материала.
На фиг. 1 представлены результаты сравнительных испытаний базового варианта минерального масла М-8-В1 (кривая 1) и предлагаемого решения (кривая 2) при высоких нагрузках. В режиме от 392 до 784 Н включительно наблюдаются изменения характера кривой 2 в связи с включением в работу других механизмов, обеспечивающих эффективность антифрикционного и противоизносного действий смазочной композиции. Это проявляется в изменении крутизны кривой температуры.
Способ обработки поверхностей трения, заключающийся в сочетании твердосмазочного покрытия и присадки, реализует три механизма смазывающего действия одновременно. Он ведет к синергизму их взаимодействия как на поверхности трения, так и в объеме смазочного материала и улучшает трибохарактеристики масел.
На фиг. 2 дано обоснование количества вводимой в узел трения с нанесенным на поверхности трения твердосмазочным покрытием присадки, исходя из основных трибохарактеристик изменения температуры, генерируемой в зоне трения ΔТ, и износа d (табл. 1).
Граничные пункты концентрации присадки находятся в пределах 0,5-1% (фиг. 2). Это обусловлено тем, что введение до 1% присадки ведет к улучшению антифрикционных и противоизносных свойств одновременно, в то время как введение свыше 1% присадки приводит к их ухудшению и в большей мере противоизносных свойств (фиг. 2).
Сравнительные данные об антифрикционных и противоизносных свойствах предлагаемого способа следующие.
Работоспособность поверхностей трения узла трения по трибологическим показателям оценивали на четырехшариковой машине трения в соответствии с ГОСТ 9490-75. Время испытания каждого образца 120 мин при режиме нагружения, указанном в табл. 2. Антифрикционные свойства определяли по изменению температуры, генерируемой в зоне трения в соответствии с выражением
ΔТ Tmax To, где ΔТ приращение температуры;
Тmax максимальная температура, генерированная в зоне трения;
То температура в начале испытания.
Противоизносные свойства определяли по диаметру пятна износа d в соответствии с ГОСТ 9490-75.
Примеры образцов поверхностей трения с нанесенным твердосмазочным покрытием и различной концентрацией присадки по табл. 3 готовили следующим образом.
В качестве покрытия для сравнения использовали дисульфидмолибденовое покрытие на силиконовой (кремнийорганической) связующей, которая обладает хорошими показателями долговечности. В качестве покрытия использовали Q5-7409.
Q5-7409 наносили на поверхность методом окунания с последующей сушкой при 200оС в течение 1 ч. Толщина покрытия 10-15 мкм. Она определялась последующим замером микаторной скобой с точностью 0,001 мм в трех плоскостях.
В качестве присадки использовали присадку на основе аммония молибденово-кислого и олеиновой кислоты [5] вводимую в базовое масло М-8-В1. Растворимость хорошая. Выпадения в осадок не наблюдалось.
При контакте твердосмазочного покрытия с присадкой и базовым маслом М-8-В1 антагонистических проявлений не наблюдалось.
Результаты лабораторных испытаний показали (табл. 1), что предлагаемый способ обработки поверхностей трения узлов трения, заключающийся в нанесении на трущиеся поверхности твердосмазочного покрытия на основе дисульфида молибдена и дополнительного введения в масло присадки на основе аммония молибденово-кислого и олеиновой кислоты при нагрузках до 490 Н включительно, позволяет существенно улучшить антифрикционные свойства базового масла в 1,59 раза, а противоизносные свойства в 1,83 раза. При этом антифрикционные и противоизносные свойства улучшаются по отношению к прототипу соответственно в 1,59 и 1,48 раза.
Для оценки работы поверхностей трения при повышенных нагрузках проводили испытания на четырехшариковой машине трения на режимах, представленных в табл. 4.
Результаты испытаний при нагрузках до 784 Н показали (табл. 5), что в данных условиях наблюдается также устойчивое улучшение антифрикционных (в 1,44 раза) и противоизносных (в 1,42 раза) свойств по отношению к маслу М-8-В1 (базовый вариант). На фиг. 1 и 3 представлены результаты испытания смазочных композиций в широком диапазоне нагрузок, которые подтверждают улучшение антифрикционных свойств узла трения за счет создания оптимальных условий для реализации условий эффективного смазывания поверхностей трения и улучшение трибологических характеристик базового масла.
Испытания образцов при различных нагрузках, проводимые для оценки смазывающей способности покрытия и его работоспособности при увеличении нагрузки без разрушения (характеристика долговечности), показали (фиг. 4), что поверхности трения с твердосмазочным покрытием, работающие в масле с добавлением присадки, изнашиваются меньше (кривая 4) по сравнению с базовым вариантом (кривая 1). Поверхности трения, работающие в базовом масле только с покрытием (кривая 2) и только с присадкой (кривая 3), также уступают по своим противоизносным свойствам предлагаемому решению. Данное положение характеризует увеличение долговечности покрытия.

Claims (1)

  1. СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТЕЙ ТРЕНИЯ УЗЛОВ ТРЕНИЯ путем нанесения на поверхность трения твердосмазочного покрытия толщиной 10 15 мкм и введения в узел трения минерального масла, отличающийся тем, что в масло предварительно вводят 0,5 1 мас. от минерального масла присадки, представляющей собой продукт взаимодействия олеиновой кислоты и молибденовокислого амония при следующем соотношении компонентов, мас.
    Молибденовокислый аммоний 20
    Олеиновая кислота До 100
SU5045718 1992-05-05 1992-05-05 Способ обработки поверхностей трения узлов трения RU2049108C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5045718 RU2049108C1 (ru) 1992-05-05 1992-05-05 Способ обработки поверхностей трения узлов трения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5045718 RU2049108C1 (ru) 1992-05-05 1992-05-05 Способ обработки поверхностей трения узлов трения

Publications (1)

Publication Number Publication Date
RU2049108C1 true RU2049108C1 (ru) 1995-11-27

Family

ID=21605978

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5045718 RU2049108C1 (ru) 1992-05-05 1992-05-05 Способ обработки поверхностей трения узлов трения

Country Status (1)

Country Link
RU (1) RU2049108C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038466A1 (en) * 1999-11-22 2001-05-31 Sergei Nikolaevich Alexandrov Method of treatment of friction surfaces of friction units

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
1. Масла, вырабатываемые предприятиями Миннефтепрома СССР. Каталог-справочник. - М.: ЦНИИТЭНефтехим, 1990, с.4-19. *
2. Трение и износ, 1987, т. 8, N 3, с.556-564. *
3. Кутьков Л.А. Износостойкие и антифрикционные покрытия М.: Машиностроение. 1976, с.156. *
4. Кламман Д. Смазки и родственные продукты. /Под ред. Ю. С. Заславского. - М.: Химия, с.174-176. *
5. Некрасов С. С. и др. Эффект антифрикционной присадки. - Автомобильный транспорт, 1989, N 5 с.37. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038466A1 (en) * 1999-11-22 2001-05-31 Sergei Nikolaevich Alexandrov Method of treatment of friction surfaces of friction units

Similar Documents

Publication Publication Date Title
US5736491A (en) Method of improving the fuel economy characteristics of a lubricant by friction reduction and compositions useful therein
CA1248517A (en) Metal working lubricant
JP4421781B2 (ja) 等速ジョイント用グリース組成物
Rajendiran et al. Antiwear study on petroleum base oils with esters
JP2555326B2 (ja) 液体潤滑油混合組成物
JP5964943B2 (ja) 潤滑剤組成物及び潤滑剤組成物を使用する方法
EP3872150B1 (en) Shock absorber lubricating oil composition, additive for friction adjustment, lubricating oil additive, shock absorber, and method for adjusting friction of shock absorber lubricating oil
US3970570A (en) Antiwear additive mixture
US2344886A (en) Lubricant composition
RU2049108C1 (ru) Способ обработки поверхностей трения узлов трения
US4209410A (en) Lubricants
Minami et al. Lubrication performance of model organic compounds in high oleic sunflower oil
RU2633350C1 (ru) Смазка пластичная антифрикционная высокотемпературная водостойкая
US4737301A (en) Polycyclic thiophene lubricating oil additive and method of reducing coking tendencies of lubricating oils
CA1106163A (en) Antioxidant stabilized lubricating oils
US4707284A (en) Lube oil anti-wear agent
US5344577A (en) Methods for reducing wear on silicon carbide ceramic surfaces
RU2202601C2 (ru) Среднетемпературная смазка для тяжелонагруженных узлов трения качения и скольжения
RU2030450C1 (ru) Смазочная композиция
US4801391A (en) Method of improving the anti-wear properties of a lube oil
RU2219224C2 (ru) Многофункциональная присадка к смазочной композиции
RU2211857C2 (ru) Канатная смазка
RU2049109C1 (ru) Присадка к смазочным маслам
RU2042712C1 (ru) Защитная смазочная композиция
JP2555340B2 (ja) 液体潤滑油混合組成物