RU2047071C1 - Конденсационное устройство паровой турбины - Google Patents

Конденсационное устройство паровой турбины Download PDF

Info

Publication number
RU2047071C1
RU2047071C1 SU5046677A RU2047071C1 RU 2047071 C1 RU2047071 C1 RU 2047071C1 SU 5046677 A SU5046677 A SU 5046677A RU 2047071 C1 RU2047071 C1 RU 2047071C1
Authority
RU
Russia
Prior art keywords
mixture
steam
partitions
main tube
tube bundle
Prior art date
Application number
Other languages
English (en)
Inventor
А.И. Осокин
Original Assignee
Акционерное общество открытого типа "УралВНИПИэнергопром"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "УралВНИПИэнергопром" filed Critical Акционерное общество открытого типа "УралВНИПИэнергопром"
Priority to SU5046677 priority Critical patent/RU2047071C1/ru
Application granted granted Critical
Publication of RU2047071C1 publication Critical patent/RU2047071C1/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Использование: в энергетике, в частности на тепловых и атомных электростанциях. Сущность изобретения: конденсационное устройство содержит по паровой стороне корпус 1, основной трубный пучок 3, пучок 4 охладителя паровоздушной смеси, образованного внутри основного пучка с помощью перегородок 5 и снабженного на выходе коллектором 6 для сбора и отвода смеси, коллектором на входе для сбора и подвода смеси, секционированным промежуточными перегородками 2 с отверстиями для трубок, при этом вся поверхность охлаждения разделена на модули, каждый из которых снабжен отдельным отводом смеси, нижняя часть 8 основного трубного пучка, размещенного в основании трапеции, отделена по пару и смеси перегородками 7 от остальной его части, каждая боковая часть основного трубного пучка и пучок в основании трапеции снабжены коллектором 12 сбора смеси, образованным трубками основного пучка со стороны входа смеси и со стороны выхода перегородками 5 и 7 с окнами 11 в них для отвода смеси к охладителю (доохладителю), при этом против окон 11 размещены решетки 10, а коллектор пучка 8 соединен с доохладителем с помощью канала 9, подводящего смесь внутрь доохладителя. 2 ил.

Description

Изобретение относится к энергетике и может быть использовано на тепловых и атомных электростанциях.
Известно конденсационное устройство, содержащее корпус, размещенную в одном корпусе и разделенную на 2-3 модуля и более поверхность охлаждения, входную и выходную водяные камеры, конденсатосборник и общие для всех модулей промежуточные перегородки. При этом каждый из модулей состоит из основного трубного пучка, трубного пучка охладителя паровоздушной смеси, образованного перегородками и делящего основной пучок на две части: нижнюю и верхнюю, сечение которого оформлено трапецией, коллектора сбора смеси, при котором смесь перепускается по длине корпуса устройства из одного отсека в другой в направлении от стороны выхода подогретой охлаждающей воды к стороне входа холодной воды [1]
Недостатками этого конденсационного устройства являются:
Увеличенное падение давления смеси при относительно небольшом дополнительном охлаждении;
быстрое снижение движущего напора смеси в трубном пучке охладителя при снижении паровой нагрузки, так как давление в секциях перед охладителями быстро выравнивается (падение давления на основном трубном пучке пропорционально примерно квадрату расхода пара через него);
увеличение концентрации воздуха в смеси по ее ходу, в результате чего основной трубный пучок первой секции проходит весь воздух, поступающий в конденсационное устройство, и этот пучок работает неэффективно;
объединение сброса смеси из пучков нижней и верхней частей (перед охладителем) в один коллектор, при этом отвод смеси из указанных частей является неопределенным, так как по отношению к набегающему потоку по входу пара они находятся в разных условиях и по этой причине отбор смеси из нижней части затруднен.
Наиболее близким к предлагаемому по технической сущности и выбранным в качестве прототипа является конденсатор паровой турбины, содержащий корпус, входную и выходную водяные камеры, размещенные с торцов корпуса, конденсатосборник, поверхность охлаждения разделенную на ряд модулей, каждый из которых включает в себя основной трубный пучок, сечение которого представляет собой разнобокую трапецию, пучок охладителя паровоздушной смеси, образованного внутри основного пучка с помощью перегородок и снабженного на выходе коллектором для сбора и отвода смеси, коллектором на входе для сбора и подвода смеси, при этом корпус секционирован промежуточными перегородками с отверстиями для трубок [1]
Недостатками прототипа являются:
большое входное сопротивление охладителя, так как периметр пучка охладителя на входе смеси не развит и не может быть увеличен потому, что зависит от оптимальной компоновки основного трубного пучка, находясь внутри него. В таком охладителе после входного участка (после двух-трех рядов трубок по ходу смеси) невозможно поддерживать достаточную по условиях теплообмена оптимальную скорость смеси, так как объем ее резко сокращается, а живое сечение для прохода смеси уменьшается, следуя линейной зависимости;
трудность отбора смеси из нижней части, размещенной на основании трапеции, основного трубного пучка, так как по отношению к набегающему потоку по входу пара она находится в худших условиях по сравнению с веpхней частью.
Цель изобретения повышение вакуума в устройстве за счет понижения сопротивления охладителя смеси по паровой стороне, снижения ее температуры и выравнивания коэффициента теплопередачи на всей поверхности за счет гарантированного отбора смеси от всех частей основного трубного пучка, обеспечивая при этом гидравлическую устойчивость отбора.
Для этого в конденсационном устройстве паровой турбины, содержащем корпус, размещенные с торцов последнего входную и выходную водяные камеры, конденсатосборник, поверхность охлаждения, состоящую из модулей, каждый из которых выполнен в виде основного трубного пучка с поперечным сечением в виде равнобоковой трапеции, трубного пучка охладителя паровоздушной смеси, размещенного внутри основного трубного пучка, отделенного от последнего перегородками и имеющего на выходе по потоку паровоздушной смеси коллектор для ее сбора и отвода, и промежуточные перегородки с отверстиями для трубок, делящие корпус на секции; оно снабжено дополнительными перегородками с окнами, отделяющими нижнюю часть основного трубного пучка, расположенного в основании трапеции по пару и паровоздушной смеси, от остальной его части, решетками, дополнительными коллекторами сбора паровоздушной смеси для боковых и нижней частей основного трубного пучка, каждый из которых образован трубками основного пучка со стороны входа паровоздушной смеси, а со стороны выхода перегородками с окнами для отвода смеси к доохладителю, причем решетки размещены против окон перегородок боковых частей основного трубного пучка, а дополнительный коллектор сбора паровоздушной смеси нижней части основного трубного пучка посредством канала соединен с доохладителем.
Сущность изобретения состоит в том, что повышение вакуума в устройстве достигается за счет размещения коллекторов сбора смеси в основных трубных пучках. При этом скорость смеси принимается равной 30-40 м/с как на входе в коллектор, в живом сечении, что зависит от размеров поперечного его сечения, так и на выходе, что зависит от живого сечения окон. В результате этого объем смеси перед доохладителем сокращается и снижается сопротивление доохладителя. Для того чтобы гарантировать приток смеси сверху, из боковых пучков, усилить охладительную способность основного пучка и предотвратить проскок пара в коллектор установлены над пучком решетки. Для того чтобы гарантировать приток смеси из основного пучка, размещенного на нижнем основании трапеции, его коллектор соединен с помощью канала с доохладителем, при этом смесь вводится внутрь доохладителя. Создание системы коллекторов в основных пучках, устройство решеток и канала обеспечивают гидравлическую устойчивость при сборе смеси со всех поверхностей, в результате чего выравнивается коэффициент теплопередачи на всех частях основного пучка. Итак, снижение сопротивления при охлаждении смеси, создание оптимальных скоростей при этом и, как результат этого, снижение температуры смеси на выходе ее из доохладителя, повышение гидравлической устойчивости при сборе смеси позволит повысить вакуум в конденсационном устройстве.
Ширина решетки должна быть больше там, где выше температура охлаждающей воды, имея в виду ее подогрев в секциях.
Необходимость поиска более прогрессивных решений по компоновке трубных пучков по сравнению с существующими подтверждается в книге Шкловер Г.Г. и Мильман О.О. Исследование и расчет конденсационных устройств паровых турбин. М. Энергоатомиздат, 1985, с. 117, рис. 5.24, в которой показано, что удельная паровая нагрузка реальных конденсаторов во всем диапазоне составляет 60-65% технически достижимой.
На фиг.1 показано конденсационное устройство паровой турбины, поперечное сечение по паровой стороне; на фиг.2 сечение А-А на фиг.1.
Возможность осуществления изобретения подтверждается описанием устройства в статическом состоянии и в работе.
Устройство содержит корпус 1, промежуточные перегородки 2 с отверстиями для прохода трубок основного пучка 3, пучка доохладителя 4 смеси, образованного внутри основного пучка перегородками 5, соединенного с ним коллектора 6 смеси, при этом вся поверхность устройства разделена на модули. Каждый модуль состоит из основного пучка 3 и пучка 4 доохладителя. Форма сечения основного трубного пучка 3 представляет собой трапецию и разделена условно на три части: две боковых и нижнюю, размещенную на нижнем основании трапеции. Устройство также содержит перегородки 7, отделяющие нижнюю часть 8 от боковых частей, отводящий смесь из нижней части 8 внутрь пучка доохладителя канал 9, решетки 10, покрывающие боковой трубный пучок против окон 11, два коллектора 12, образованные с одной стороны трубками основного пучка, с другой перегородками 5 и 7 с окнами 11 в них, коллектор 13, образованный с одной стороны трубками основного пучка, с другой перегородками 7. В нижней части корпуса размещен конденсатосборник 14, с торцов корпуса входная 15 и выходная 16 водяные камеры.
Конденсационное устройство работает следующим образом.
При подаче охлаждающей воды в трубки основного пучка 3, пучка 4 доохладителя, подаче отработанного пара в корпус 1 (межтрубное пространство), работе эжектора (не показан), всас которого соединен с коллектором 6 сбора и отвода паровоздушной смеси, происходят следующие тепловые и гидравлические процессы:
конденсация пара, содержащего воздух с незначительной концентрацией, на поверхности пучка 3, скомпонованного в виде ленты, имеющей такой периметр на входе пара, чтобы средняя скорость не превышала величины порядка 50 м/с, конденсат пара отводится из устройства насосом;
нагрев охлаждающей воды. При номинальном расходе пара в устройство нагрев воды составляет приблизительно 7оС и зависит от расхода охлаждающей воды;
резкое на первых рядах пучка 3 сокращение объемов пара (в зоне интенсивной конденсации), в результате чего концентрация воздуха в паре значительно повышается, а скорость пара (смеси) падает до малых значений;
истечение образовавшейся смеси с внутренних рядов трубок ленты в пучок 4 доохладителя, где смесь охлаждается, концентрация воздуха увеличивается до 30-50% поступает в коллектор 6, откуда отсасывается эжектором.
Смесь в пучок 4 доохладителя поступает двумя путями:
1. Поступление через коллектор 12 и окна 11. При этом межтрубное живое сечение у коллектора выбирается так, чтобы скорость в этом сечении составляла 30-40 м/с, т.е. такой, чтобы трубки основного пучка выполняли функции охладителя смеси первой ступени. Величина скорости зависит от размеров поперечного сечения коллектора 12 и окон 11.
Для того, чтобы обеспечить гарантированный сток смеси с внутренних рядов по всей высоте боковой части пучка 3, над ним размещена решетка 10, ограничивающая прямое поступление пара через пучок в коллектор 12. В результате этого в пространстве между коллектором и решеткой возникает зона пониженного давления, а перепад давления между зоной и внутренними рядами труб обеспечивает сток смеси. При этом температура смеси перед коллектором 12 понижается.
2. Поступление через коллектор 13 и канал 9. При этом сечение коллектора 13 выбирается так, как описано выше. Отличием является отвод смеси из коллектора 13 по каналу 9 внутрь доохладителя. Глубина ввода подбирается так, чтобы увеличение сопротивления при подводе пара к нижней части пучка 8 было скомпенсировано уменьшением сопротивления этого потока смеси в доохладителе, что обеспечивает необходимый подвод к нижней части 8 основного пучка.

Claims (1)

  1. КОНДЕНСАЦИОННОЕ УСТРОЙСТВО ПАРОВОЙ ТУРБИНЫ, содержащее корпус, размещенные с торцов последнего входная и выходная водяные камеры, конденсатосборник, поверхность охлаждения, состоящую из модулей, каждый из которых выполнен в виде основного трубного пучка с поперечным сечением в виде равнобокой трапеции, трубного пучка охладителя паровоздушной смеси, размещенного внутри основного трубного пучка, отделенного от последнего перегородками и имеющего на выходе по потоку паровоздушной смеси коллектор для ее сбора и отвода, и промежуточные перегородки с отверстиями для трубок, деляющие корпус на секции, отличающееся тем, что оно снабжено дополнительными перегородками с окнами, отделяющими нижнюю часть основного трубного пучка, расположенного в основании трапеции, по пару и паровоздушной смеси от остальной его части решетками, и дополнительными коллекторами сбора паровоздушной смеси для боковых и нижней частей основного трубного пучка, каждый из которых образован трубками основного пучка со стороны входа паровоздушной смеси, а со стороны выхода перегородками с окнами для отвода смеси к доохладителю, причем решетки размещены против окон перегородок боковых частей основного трубного пучка, а дополнительный коллектор сбора паровоздушной смеси нижней части основного трубного пучка посредством канала соединен с доохладителем.
SU5046677 1992-02-13 1992-02-13 Конденсационное устройство паровой турбины RU2047071C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5046677 RU2047071C1 (ru) 1992-02-13 1992-02-13 Конденсационное устройство паровой турбины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5046677 RU2047071C1 (ru) 1992-02-13 1992-02-13 Конденсационное устройство паровой турбины

Publications (1)

Publication Number Publication Date
RU2047071C1 true RU2047071C1 (ru) 1995-10-27

Family

ID=21606493

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5046677 RU2047071C1 (ru) 1992-02-13 1992-02-13 Конденсационное устройство паровой турбины

Country Status (1)

Country Link
RU (1) RU2047071C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515324C2 (ru) * 2009-05-15 2014-05-10 ЭсПиЭкс КУЛИНГ ТЕХНОЛОДЖИС, ИНК. Конденсатор пара с воздушным охлаждением и естественной циркуляцией, а также способ
RU2630065C1 (ru) * 2013-11-08 2017-09-05 Сименс Акциенгезелльшафт Модуль для конденсации паровоздушной смеси и для охлаждения отработавшей воды турбины
CN108827018A (zh) * 2018-05-03 2018-11-16 东方电气集团东方汽轮机有限公司 一种适用于侧向进汽凝汽器管束结构
CN113686167A (zh) * 2021-08-23 2021-11-23 杭州国能汽轮工程有限公司 一种大长径比凝汽器的空冷区布置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Руководящие указания по тепловому расчету поверхностных конденсаторов мощных паровых турбин тепловых и атомных электростанций. - М.: Союзтехэнерго, 1982, с. 75-76. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515324C2 (ru) * 2009-05-15 2014-05-10 ЭсПиЭкс КУЛИНГ ТЕХНОЛОДЖИС, ИНК. Конденсатор пара с воздушным охлаждением и естественной циркуляцией, а также способ
RU2630065C1 (ru) * 2013-11-08 2017-09-05 Сименс Акциенгезелльшафт Модуль для конденсации паровоздушной смеси и для охлаждения отработавшей воды турбины
US9951657B2 (en) 2013-11-08 2018-04-24 Siemens Aktiengesellschaft Module for condensing expelled vapors and for cooling turbine effluent
CN108827018A (zh) * 2018-05-03 2018-11-16 东方电气集团东方汽轮机有限公司 一种适用于侧向进汽凝汽器管束结构
CN113686167A (zh) * 2021-08-23 2021-11-23 杭州国能汽轮工程有限公司 一种大长径比凝汽器的空冷区布置方法
CN113686167B (zh) * 2021-08-23 2022-07-08 杭州国能汽轮工程有限公司 一种大长径比凝汽器的空冷区布置方法

Similar Documents

Publication Publication Date Title
US5018572A (en) Steam condenser
RU2317500C2 (ru) Комбинированный конденсатор с воздушным охлаждением
JPH09236393A (ja) 一体の積層通気凝縮器を備える蒸気凝縮モジュール
US4969507A (en) Integral blow down concentrator with air-cooled surface condenser
US4903491A (en) Air-cooled vacuum steam condenser
MXPA96006188A (en) Condensation module of steam with condenser deventilacion stacked integ
US5139083A (en) Air cooled vacuum steam condenser with flow-equalized mini-bundles
US4379485A (en) Wet/dry steam condenser
US4202405A (en) Air cooled condenser
RU2047071C1 (ru) Конденсационное устройство паровой турбины
WO2006047209A1 (en) Air-cooled condensing system and method
US4944839A (en) Interstage liquor heater for plate type falling film evaporators
JPS60103294A (ja) 熱交換器、圧縮機中間冷却器、流体温度調節方法及び湿気分除去方法
CA1309908C (en) Steam condenser
US4015562A (en) Moisture separator and reheater
US3558439A (en) Water desalting process and apparatus
KR20050014712A (ko) 복수기
US4417619A (en) Air-cooled heat exchanger
US3911067A (en) Direct contact gas condenser
US4537248A (en) Air-cooled heat exchanger
US4524728A (en) Steam condensing apparatus
EP0346848B1 (en) Air-cooled vacuum steam condenser
US3330739A (en) Multi-cell flash distillation system
US2916260A (en) Condenser deaerator
AU712064B2 (en) Steam condenser