RU2036853C1 - Способ аэрирования жидкости - Google Patents

Способ аэрирования жидкости Download PDF

Info

Publication number
RU2036853C1
RU2036853C1 SU914942886A SU4942886A RU2036853C1 RU 2036853 C1 RU2036853 C1 RU 2036853C1 SU 914942886 A SU914942886 A SU 914942886A SU 4942886 A SU4942886 A SU 4942886A RU 2036853 C1 RU2036853 C1 RU 2036853C1
Authority
RU
Russia
Prior art keywords
liquid
aeration
air
streams
jets
Prior art date
Application number
SU914942886A
Other languages
English (en)
Inventor
В.Н. Соколов
М.А. Яблокова
С.И. Петров
Original Assignee
Санкт-Петербургский технологический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Санкт-Петербургский технологический институт filed Critical Санкт-Петербургский технологический институт
Priority to SU914942886A priority Critical patent/RU2036853C1/ru
Application granted granted Critical
Publication of RU2036853C1 publication Critical patent/RU2036853C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

Использование: при аэрировании оборотных и сточных вод в процессах их микробиологической очистки или дегазации/отдувки растворенных газов. Сущность изобретения: диспергирование струи подаваемого под слой жидкости воздуха осуществляется охватывающими ее сверху и снизу, затопленными струями жидкости, создаваемыми выносным циркуляционным насосом, при этом верхняя и нижняя струи жидкости наклонены друг к другу под углом 10 - 15°, а отношение расхода циркулирующей жидкости к расходу подаваемого на аэрацию воздуха составляет 0,96 - 1,2. 3 ил.

Description

Изобретение относится к способам диспергирования газов в жидкостях и может быть использовано при аэрировании оборотных и сточных вод в процессах их микробиологической очистки или дегазации (отдувки растворенных газов, например, сероводорода, сероуглерода и т.п.).
Известен пневматический способ аэрирования жидкости, заключающийся в подаче воздуха под слой обрабатываемой жидкости через барботеры (см. например, Худенко Б.М. Шпирт Е.А. Аэраторы для очистки сточных вод, М. Стройиздат, 1973, с. 33-44). В зависимости от размеров образующихся при таком способе аэрации пузырьков воздуха пневматические системы разделяют на три типа: мелкопузырчатые (диаметр пузырей dп < 2,5 мм), среднепузырчатые (dп 2,5-10 мм) и крупнопузырчатые (dп > 10 мм). Пористые элементы мелкопузырчатых систем пневматической аэрации достаточно быстро засоряются, их гидравлическое сопротивление при этом увеличивается и со временем они просто перестают пропускать воздух. В связи с этим фильтросные пластины и тканевые аэраторы приходится часто заменять. Для среднепузырчатой аэрации применяют перфорированные трубы, которые также со временем требуют замены из-за увеличения размеров отверстий в результате коррозии. Замена аэрационных элементов, расположенных, как правило, у дна сооружения требует его опорожнения и остановки работы на длительный срок, что существенно повышает расходы на эксплуатацию таких систем и снижает их производительность.
Крупнопузырчатые пневматические аэраторы (открытые трубы, сопла) не позволяют получать высокую поверхность контакта фаз, что уменьшает скорость растворения кислорода воздуха в жидкости и снижает степень его использования.
Известен способ аэрирования жидкости, называемый пневмомеханическим (см. Худенко Б. М. Шпирт Е.А. Аэраторы для очистки сточных вод. М. Стройиздат, 1973, с.62), заключающийся в подаче воздуха под слой жидкости и диспергировании его механическими перемешивающими устройствами. Наличие погруженных в жидкость движущихся частей механических перемешивающих устройств снижает их эксплуатационную надежность и ремонтопригодность. Кроме того, использование мешалок предполагает наличие громоздкого, сложного в обслуживании мотора-редуктора с жестко заданной частотой вращения и ограниченным выбором мощности. Это приводит к тому, что устройства для осуществления пневмомеханического способа аэрирования жидкости имеют высокую энерго- и металлоемкость.
Целью предлагаемого технического решения является снижение энергоемкости процесса аэрирования и повышение удобства обслуживания аэрационной системы.
Цель достигается тем, что диспергирование струи подаваемого под слой жидкости воздуха осуществляется охватывающими ее сверху и снизу затопленными струями жидкости, создаваемыми выносным циркуляционным насосом, при этом верхняя и нижняя струи жидкости наклонены друг к другу под углом 10-15о, а отношение расхода циркулирующей жидкости к расходу подаваемого на аэрацию воздуха составляет 0,96-1,2.
При аэрировании жидкости предложенным способом энергия, необходимая для такого дробления воздуха, вводится в жидкость не механическим перемешивающим устройством, а выносным насосом. По интенсивности массопереноса кислорода из газа в жидкость система с диспергированием воздуха затопленными струями не уступает системам аэрации с механическими перемешивающими устройствами. Объемный коэффициент массопереноса достигает 0,1-0,2 с-1. При одинаковой производительности по растворяемому кислороду энергетические затраты по предлагаемому способу на 25-30% ниже, чем при пневмомеханической аэрации. Это объясняется более эффективным использованием энергии в процессе массопереноса и более высоким КПД насоса по сравнению с КПД привода мешалки. Кроме того, использование механического перемешивающего устройства предполагает наличие мотора-редуктора с жестко заданной частотой вращения и ограниченным выбором мощности. В предлагаемой системе аэрации подача жидкости выносным насосом может регулироваться, что обеспечивает энергетически экономное ведение процесса.
Наивысшая интенсивность массопереноса кислорода из воздуха в жидкость, не уступающая интенсивности массопереноса при пневмомеханической аэрации, наблюдается при величине угла столкновения жидкостных струй 10-15о. Это наглядно видно из экспериментально полученного графика зависимости объемного коэффициента массопереноса KLa от угла α наклона струй (фиг.3). При значениях угла α > 15о происходит "запирание" струй газа вблизи газораспределительной камеры, что приводит к периодическому образованию крупных пузырей, неэффективных в процессе массопереноса. При 10о струи проходят слишком большее расстояние до точки столкновения, теряя при этом значительную долю своего импульса. В результате дробления газовой фазы происходит не столько интенсивно, пузыри имеют более крупные размеры и скорость массопереноса уменьшается.
Как показали эксперименты, для эффективного ведения процесса аэрирования отношение расхода Vж циркулирующей жидкости к расходу Vв воздуха должно находиться в пределах 0,96-1,2. При (Vж/Vв) < 0,96 расход жидкости не достаточен для тонкого диспергирования всего подаваемого воздуха. Часть его начинает прорываться сквозь верхнюю струю жидкости в виде более крупных пузырей, что приводит к ухудшению массообменных характеристик процесса. Увеличение расхода циркулирующей сверх установленного соотношения (Vж/Vв) > 1,2 не приводит к существенной интенсификации массопереноса и является нецелесообразным с энергетической точки зрения, так как требует использования насоса слишком высокой мощности.
На фиг.1 изображена технологическая схема осуществления способа; на фиг. 2 узел I на фиг.1; на фиг.3 графическое изображение способа.
Способ осуществляется с установке, которая содержит емкость 1 с аэрирующей жидкостью, циркуляционный насос 2, трубопровод 3 для циркулирующей жидкости, трубопровод 4 для подвода воздуха, распределительную камеру 5, штуцеры 6 и 7 соответственно для ввода исходной и вывода обработанной жидкости. Распределительная камера 5 имеет центральный канал 8 для ввода воздуха в верхний 9 и нижний 10 каналы для подачи циркулирующей жидкости. Конструкция камеры обеспечивает наклон жидкостных струй навстречу друг другу под углом 10-15 градусов.
Способ осуществляется следующим образом.
Исходная жидкость поступает в емкость 1 через штуцер 6 и заполняет ее до уровня штуцера 7, который служит для вывода обработанной жидкости. Жидкость из нижней части емкости 1 циркуляционным насосом 2 нагнетается по трубопроводу 3 в верхний 9 и нижний 10 каналы распределительной камеры 5. Сжатый воздух от газодувки по трубопроводу 4 подается в центральный канал 8 распределительной камеры 5. Наклонные струи жидкости, выходящие из каналов 9 и 10 со скоростью 8-10 м/с, увлекают за собой выходящий из центрального канала 8 воздух, не давая образовываться его крупным пузырям. На некотором расстоянии от распределительной камеры струи жидкости смыкаются и дробят заключенный между ними воздух на мелкие пузырьки. Образовавшаяся струя газожидкостной смеси распространяется в жидкости в горизонтальном направлении, постепенно поднимаясь к поверхности. Погруженная струя сообщает свою энергию окружающей жидкости, вызывая в емкости интенсивное перемешивание.
Одинаковая со способом-прототипом интенсивность аэрации достигается при затратах энергии, меньших на 25-30% Предложенная система аэрации, по сравнению с пневмомеханической, гораздо удобнее в обслуживании, поскольку не содержит погруженных в жидкость движущихся элементов и сложного, громоздкого привода, а использует лишь легко доступный для осмотра и ремонта выносной насос.

Claims (1)

  1. СПОСОБ АЭРИРОВАНИЯ ЖИДКОСТИ, включающий подачу под слой жидкости струи воздуха и ее диспергирование, отличающийся тем, что диспергирование струи воздуха осуществляется охватывающими ее сверху и снизу затопленными струями жидкости, создаваемыми выносным циркуляционным насосом, при этом верхняя и нижняя струи жидкости наклонены одна к другой под углом 10 15o, а отношение расхода циркулирующей жидкости к расходу подаваемого на аэрацию воздуха составляет 0,96 1,2.
SU914942886A 1991-06-05 1991-06-05 Способ аэрирования жидкости RU2036853C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU914942886A RU2036853C1 (ru) 1991-06-05 1991-06-05 Способ аэрирования жидкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU914942886A RU2036853C1 (ru) 1991-06-05 1991-06-05 Способ аэрирования жидкости

Publications (1)

Publication Number Publication Date
RU2036853C1 true RU2036853C1 (ru) 1995-06-09

Family

ID=21577983

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914942886A RU2036853C1 (ru) 1991-06-05 1991-06-05 Способ аэрирования жидкости

Country Status (1)

Country Link
RU (1) RU2036853C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748154C1 (ru) * 2020-05-08 2021-05-19 Общество с ограниченной ответственностью "Универсальное техническое обслуживание" (ООО "Универсальное техническое обслуживание") Способ напорной аэрации воды для окисления растворенного в воде железа до трехвалентного состояния (Fe3+) и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Худенко Б.М. Шпирт Е.А. Аэраторы для очистки сточных вод. М.: Стройиздат, 1973, с.33-44, 62. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748154C1 (ru) * 2020-05-08 2021-05-19 Общество с ограниченной ответственностью "Универсальное техническое обслуживание" (ООО "Универсальное техническое обслуживание") Способ напорной аэрации воды для окисления растворенного в воде железа до трехвалентного состояния (Fe3+) и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US4337152A (en) Aeration apparatus and method
US4267052A (en) Aeration method and apparatus
US4224158A (en) Aeration system and method with tapered nozzle
EP2095869B1 (en) Air diffusing device
KR20000047823A (ko) 가스 용해 장치
JP2973305B2 (ja) 加圧式酸素溶解方法
US4094774A (en) Method and apparatus for oxygenating aerobically decomposable liquors
US3933640A (en) Methods and apparatus for treating wastewater
JP3397096B2 (ja) 生物汚泥のオゾン処理装置および方法
JP2013522021A (ja) ガス捕集型気液反応装置とこれを利用した水処理装置並びにガス浄化装置
US5376311A (en) Apparatus for mixing gas and liquid
CA2043162C (en) Installation for the treatment of flows of liquids with monophase contactor and recirculating-degassing device for such an installation
CA2598524C (en) Aerating wastewater for re-use
RU2036853C1 (ru) Способ аэрирования жидкости
US6272839B1 (en) Hydraulic air compressor and biological reactor system and method
IE47685B1 (en) Aerator
JP2002336890A (ja) 有機性排水の処理方法及び装置
CN113302161B (zh) 将流体喷射入液体的装置、清洁所述装置的方法以及流出物处理设备
US10603643B2 (en) Process and device for dispersing gas in a liquid
JPH09299930A (ja) 気液接触装置
KR20040092843A (ko) 기체의 용해 및 혼합을 이용한 오폐수 처리장치
JP3953127B2 (ja) 曝気処理装置
CN107381701B (zh) 一种利用恒压微气泡发生器供气的臭氧气浮装置及方法
JP2009039673A (ja) 廃水処理装置及び廃水処理方法
KR200221815Y1 (ko) 유동상 하수처리장치