RU2030339C1 - Летательный аппарат для околоземных и космических полетов - Google Patents

Летательный аппарат для околоземных и космических полетов Download PDF

Info

Publication number
RU2030339C1
RU2030339C1 SU5015226A RU2030339C1 RU 2030339 C1 RU2030339 C1 RU 2030339C1 SU 5015226 A SU5015226 A SU 5015226A RU 2030339 C1 RU2030339 C1 RU 2030339C1
Authority
RU
Russia
Prior art keywords
aircraft
housing
flying vehicle
flywheel
magnetic field
Prior art date
Application number
Other languages
English (en)
Inventor
Анатолий Сергеевич Морозюк
Алексей Анатольевич Морозюк
Original Assignee
Анатолий Сергеевич Морозюк
Алексей Анатольевич Морозюк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Сергеевич Морозюк, Алексей Анатольевич Морозюк filed Critical Анатолий Сергеевич Морозюк
Priority to SU5015226 priority Critical patent/RU2030339C1/ru
Application granted granted Critical
Publication of RU2030339C1 publication Critical patent/RU2030339C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/409Unconventional spacecraft propulsion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/425Power storage
    • B64G1/426Flywheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toys (AREA)

Abstract

Использование: в аэрокосмической технике с применением в двигательных установках принципов летательных аппаратов (ЛА) эл. - магн. взаимодействия бортового магн. поля с околоземной или космической средой. Сущность изобретения: ЛА содержит дискообразный корпус 1, выполняющий функции магнитопровода и конструктивно объединенный с электромагнитами 2. В корпусе установлен супермаховик (СМ) 3, для управления двухстепенным наклоном СМ служит механизм 8. ЛА запускается со специально оборудованного старта; корпус 1 раскручивается при помощи, например, бесконтактных электродвигателей. Благодаря волнистой структуре магнитного поля в плоскости наружной стенки дискообразного корпуса 1 происходит взаимодействие этого поля с окружающей (например, влажной воздушной) средой, характер обтекания которой корпуса ЛА приводит к возникновению подъемной силы. Для управления движением ЛА используется СМ, механизм 8 наклона которого является исполнительным органом бортовой гиромаховичной системы ЛА. 4 ил.

Description

Изобретение относится к аэрокосмической технике, в частности к летательным аппаратам (ЛА), использующим в двигательной установке (ДУ) механизм электромагнитного взаимодействия бортового магнитного поля с околоземной или космической средой.
Наиболее близким техническим решением из числа известных является ЛА, содержащий корпус, установленную в корпусе подвижную массу, снабженную приводом вращения относительно корпуса, энергодвигательную систему, включающую источник питания и устройство создания пространственно-неоднородного магнитного поля с помощью установленных внутри корпуса магнитов, а также вспомогательные системы.
Известный ЛА осуществляет управляемый полет за счет реактивной тяги, возникающей в результате взаимодействия генерируемого в рабочей камере ДУ высокочастотного магнитного поля с частицами (молекулярными диполями) парамагнитной газообразной среды (без ионизации). Для создания высокочастотного магнитного поля используется вращающаяся система постоянных магнитов, а в качестве среды рассматриваются приземные слои, при этом атмосферный воздух является рабочим веществом ДУ.
Существенной проблемой при реализации аналогичного ЛА с заданным импульсом тяги является решение таких технических вопросов, как организация в рабочей камере высокочастотного магнитного поля и обеспечение запаса рабочего тела (сжатого воздуха) при полете в верхних слоях магнитосферы Земли или в космическом пространстве.
Целью изобретения является достижение технического результата, состоящего в создании эффективной двигательной системы и системы управления полетом на основании использования вращающегося тела с дискообразным корпусом, имеющего привод, преимущественно от гиромаховичной системы.
Данный технический результат достигается тем, что в известном ЛА, содержащем корпус, установленную в корпусе подвижную массу, снабженную приводом вращения относительно корпуса, энергодвига- тельную систему, включающую источник питания и устройство создания пространственно-неоднородного магнитного поля с помощью установленных внутри корпуса магнитов, а также вспомогательные системы, корпус выполнен в виде соосных жестко связанных верхнего и нижнего сбалансированных дисков с гладкой внешней поверхностью, установлены магниты в нижнем диске и объединены с корпусом как с магнитопроводом, обеспечивающим в плоскости наружной стенки диска волнистую структуру магнитного поля, а подвижная масса выполнена в виде маховика, связанного с корпусом посредством исполнительных элементов силовой многостепенной гиромаховичной системы и энергорекуперативного устройства.
На фиг. 1 представлена конструктивная схема ЛА, вид в разрезе в одной из вертикальных плоскостей симметрии; на фиг. 2 - сечение А-А на фиг. 1; на фиг. 3 - развертка донной части корпуса ЛА с характеристикой напряженности магнитного поля ДУ вдоль окружностей "а" и "б" по фиг. 2; на фиг. 4 - модель опытного образца ЛА согласно изобретению.
ЛА (фиг. 1) содержит дискообразный корпус 1 играющий роль рабочего элемента энергодвигательной системы (в качестве магнитопровода) и одновременно являющийся цельной герметичной конструкцией. Корпус конструктивно объединен с магнитами (соленоидами) 2, также являющимися элементами энергодвигательной системы. Соосно с корпусом установлен супермаховик 3 в герметичной камере 4. Кинематическая связь супермаховика с корпусом осуществляется через магнитную муфту 5 сцепления рекуперативного маховика 6, а также посредством магнитной муфты сцепления 7, исключающей включение рекуперативного маховика.
Для управления наклоном супермаховика с камерой в двух взаимно перпендикулярных плоскостях служит подъемный механизм 8. Батареи постоянного электрического тока помещены в отсеке 9. Пункт управления системами и механизмами ЛА расположен в экранированной кабине 10. Для проникновения внутрь ЛА служит проем 11, оборудованный герметичным люком.
Для запуска аппарата предусмотрен оборудованный старт, представляющий собой опорную конструкцию для фиксации ЛА в исходном положении (как показано на фиг. 1) и создания пускового вращения корпуса ЛА. Пусковое вращение осуществляется с помощью бесконтактных электромагнитных двигателей, установленных на опорной конструкции старта по окружности относительно наружной кромки корпуса ЛА. В состав оборудования старта могут входить аппаратура для ионизации воздуха (ИВ) в районе старта, станция сжижения гелия (ССГ) с Т-4К для пусковой заправки системы криостатов ЛА, станция радиотелеметрической связи и управления ЛА.
Модель (см. фиг. 4) содержит корпус 12, инерционный диск 13, постоянные магниты 14 (5 шт.), сплав ЮНДК массой 48 г (1 шт.), подшипник 15 качения, стопорную гайку 16. Общая масса модели 720 г, основной материал - Ст.5.
Средства и условия проведения испытаний модели следующие: запуск модели ЛА был осуществлен в июле 1991 г. с крыши девятиэтажного дома при естественной ионизации воздуха. Пусковое вращение корпуса модели сообщалось от электродвигателя мощностью 200 Вт с пусковыми оборотами 2000-2400 об/мин.
ЛА работает следующим образом.
В соответствии с функциональным назначением перечисленного оборудования старта последовательность операций по запуску ЛА следующая:
установка ЛА на старте с проверкой баланса массы;
заправка системы криостатов жидким гелием;
проверка работы всех бортовых систем и механизмов;
герметизация корпуса ЛА;
включение аппаратуры ИВ, время работы 20 мин;
включение cиcтемы пуcкового вращения ЛА;
включение двигательной системы ЛА и пуск.
Механизм электромагнитного взаимодействия вращающегося магнитного поля с частицами среды, в результате которого возникает подъемная сила известного ЛА. Для рассматриваемого ЛА этот механизм имеет отличие в структуре и параметрах взаимодействующего бортового магнитного поля.
Для понимания физики отмеченного процесса на фиг. 3 приведена развертка донной части нижнего диска корпуса по радиусам "а" и "б", на которых показана волнистая структура напряженности магнитного поля. Волнистый характер бортового магнитного поля объясняется герметическим расположением соленоидов в нижнем диске корпуса. При вращении ЛА волнистое поле взаимодействует с частицами среды, обладающими магнитным моментом, в результате чего наблюдается механизм взаимного "отталкивания" и возникновения нормальной составляющей силы к плоскости вращения ЛА, которая в нижних слоях магнитосферы Земли может иметь следующий обобщенный вид:
F = (1,5-3)М˙g, где М - масса ЛА;
g - ускорение свободного падения.
Существенной особенностью отмеченного взаимодействия, предусмотренной в конструкции рассматриваемого ЛА, является обеспечение энергообмена между бортовым магнитным полем и частицами среды как в прямом, так и в обратном направлениях, т. е. магнитное поле ЛА (соответственно и корпус) получает ускорение вращения при определенных энергетических уровнях частиц. Эффективность данного энергообмена определяется такими показателями, как геометрические размеры (диаметр) ЛА, параметры бортового магнитного поля, начальные параметры движения ЛА (на определенном отрезке траектории), а также энергетический уровень и концентрация частиц плазменной среды. В зависимости от величины перечисленных параметров степень эффективности указанного энергообмена может быть выражена общим коэффициентом, принимающим значения 0,16-0,35 (рассчитан теоретически).
Управление полетом ЛА осуществляется с помощью силовой гиромаховичной системы. Отдельные управляемые маневры ЛА выполняются посредством следующих операций по управлению полетом
а) запуск ЛА со старта - корпус получает пусковые обороты, включается муфта 6, маховик, имея силовую связь с корпусом, получает одинаковое количество оборотов, включается питание системы соленоидов, происходит вертикальный взлет;
б) изменение скорости полета - включается муфта 7, осуществляются отбор или отдача вращательной энергии с маховика на корпус, соответственно изменяется интенсивность (направление) внешнего взаимодействия корпусного магнитного поля со средой, а также скорость полета;
в) изменение направления полетом - включается механизм 8, работающий автономно в одной из перпендикулярных плоскостей, в результате этого возникает момент прецессии гиромаховичной системы, что вызывает изменение положения вертикальной оси ЛА в пространстве, соответственно изменяется направление полета;
г) посадка ЛА - поочередно работают механизм 8 и муфта 7 до полной остановки вращения корпуса (после приземления ЛА).
Для обеспечения функционирования гиромаховичной системы в общей системе ЛА необходимо соблюдение следующих конструктивных требований:
соосная сбалансированность с корпусом ЛА,
блокировка максимальных оборотов супермаховика (не превышающие предельно-допустимые),
допускаемое соотношение моментов инерции корпуса и супермаховика определяется выражением М = 2-4 Мм.
Для экономического расходования электроэнергии батарей при питании соленоидов двигательной системы ЛА в конструкции соленоидов предусмотрено использование сверхпроводящего оборудования с устройством автономных криостатов, заправляемых жидким гелием (непосредственно перед стартом). После запуска и выхода ЛА в космическое пространство регулирование температурного режима соленоидов осуществляется с помощью пассивной системы терморегулирования.
Результаты испытаний модели следующие.
После раскручивания и отрыва модели от старта был зафиксирован (визуально) плавный подъем на высоту 1,2-1,5 м с кратковременным зависанием. Затем последовал ускоренный подъем модели вертикально вверх до полной потери ее видимости. Общее время наблюдаемого полета 10-15 с.
Хотя недостаток проведенных испытаний и заключался в непроведении измерений параметров модели и среды в связи с отсутствием технических средств, тем не менее качественная оценка динамики полета модели позволяет предположить, что подъемная сила ЛА рассмотренной конструкции имеет механизм (кроме описанного выше), связанный с магнитогравитационным эффектом, использующим центробежное поле корпуса или маховика.

Claims (1)

  1. ЛЕТАТЕЛЬНЫЙ АППАРАТ ДЛЯ ОКОЛОЗЕМНЫХ И КОСМИЧЕСКИХ ПОЛЕТОВ, содержащий корпус, установленную в корпусе подвижную массу, снабженную приводом вращения относительно корпуса, энергодвигательную систему, включающую в себя источник питания и устройство создания пространственно-неоднородного магнитного поля с помощью установленных в корпусе магнитов, а также вспомогательные системы, отличающийся тем, что корпус выполнен в виде соосных жестко связанных верхнего и нижнего сбалансированных дисков с гладкой внешней поверхностью, магниты установлены в нижнем диске и объединены с корпусом как с магнитопроводом, обеспечивающим в плоскости наружной стенки диска волнистую структуру магнитного поля, а подвижная масса выполнена в виде маховика, связанного с корпусом посредством исполнительных элементов силовой многостепенной гиромаховичной системы и энергорекуперативного устройства.
SU5015226 1991-12-20 1991-12-20 Летательный аппарат для околоземных и космических полетов RU2030339C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5015226 RU2030339C1 (ru) 1991-12-20 1991-12-20 Летательный аппарат для околоземных и космических полетов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5015226 RU2030339C1 (ru) 1991-12-20 1991-12-20 Летательный аппарат для околоземных и космических полетов

Publications (1)

Publication Number Publication Date
RU2030339C1 true RU2030339C1 (ru) 1995-03-10

Family

ID=21590891

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5015226 RU2030339C1 (ru) 1991-12-20 1991-12-20 Летательный аппарат для околоземных и космических полетов

Country Status (1)

Country Link
RU (1) RU2030339C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092254A (zh) * 2011-01-09 2011-06-15 黄汉洲 电磁飞车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Экспресс-информация. Астронавтика и ракетодинамика, N 39//М, ВИНИТИ, 1981, с.15, 23. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092254A (zh) * 2011-01-09 2011-06-15 黄汉洲 电磁飞车

Similar Documents

Publication Publication Date Title
EP3225541B1 (en) Weight-shifting coaxial helicopter
US10293957B2 (en) Rotary wing unmanned aerial vehicle and pneumatic launcher
US7131613B2 (en) High-altitude launching of rockets lifted by helium devices and platforms with rotatable wings
AU709234B2 (en) Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft
US3199809A (en) Circular wing flying craft
CN107158602A (zh) 一种发射型灾难救援和灭火无人机
WO1998030449A1 (en) Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft
US20220144441A1 (en) Electromagnetic gyroscopic stabilizing propulsion system method and apparatus
WO2023149132A1 (ja) 打上方法、打上装置、加速方法、マスドライバ、輸送システム
US4618112A (en) Spacecraft angular momentum stabilization system and method
EP0441205B1 (en) Essentially passive method for inverting the orientation of a dual spin spacecraft
RU2030339C1 (ru) Летательный аппарат для околоземных и космических полетов
Yin et al. Technical progress in landing mechanisms for exploring small solar system bodies
Pheh et al. SpICED: Design and control of a safe spherical blimp using coandă effect
US10954004B2 (en) Energy extraction and storage, and propulsion systems for space vehicles
Fredrickson et al. Application of the mini AERCam free flyer for orbital inspection
US20210074461A1 (en) Impulse difference engine
Bogar et al. Hypersonic Airplane Space Tether Orbital Launch (HASTOL) system-Interim study results
US11174046B2 (en) System and method for rotating mass attitude control
CN207225642U (zh) 多旋翼平衡飞行器及飞行设备
US20190002098A1 (en) Aircraft
CN2557422Y (zh) 飞行器
US6375124B1 (en) Automatically-actuated cargo and personnel scooping apparatus with techniques for alleviating the effects of wind gusts
JP2021017224A (ja) 打ち上げロケットを必要としない円盤型の宇宙船1と水素など使用するバルーン架台2の宇宙船打ち上げ用運搬船。
GB2209832A (en) Gyroscopic propulsion and levitation