RU2029258C1 - Поляриметр для измерения концентрации сахара в моче - Google Patents

Поляриметр для измерения концентрации сахара в моче Download PDF

Info

Publication number
RU2029258C1
RU2029258C1 SU4942683A RU2029258C1 RU 2029258 C1 RU2029258 C1 RU 2029258C1 SU 4942683 A SU4942683 A SU 4942683A RU 2029258 C1 RU2029258 C1 RU 2029258C1
Authority
RU
Russia
Prior art keywords
filter
vibrator
polarization
cuvette
telescopic system
Prior art date
Application number
Other languages
English (en)
Inventor
А.И. Пеньковский
Original Assignee
Центральное конструкторское бюро "Фотон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Центральное конструкторское бюро "Фотон" filed Critical Центральное конструкторское бюро "Фотон"
Priority to SU4942683 priority Critical patent/RU2029258C1/ru
Application granted granted Critical
Publication of RU2029258C1 publication Critical patent/RU2029258C1/ru

Links

Images

Abstract

Использование: поляриметр относится к оптическому приборостроению. Сущность: в поляриметре, содержащем источник света, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, составной поляризационный фильтр закреплен на якоре вибратора и выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45° и -45° по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник, усилитель, устройство сравнения, регулирующий элемент, источник питания. Непосредственно перед кюветой установлена телескопическая система, составной поляризационный фильтр с электромагнитным вибратором установлены также перед кюветой в фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра. 3 ил.

Description

Изобретение относится к оптико-механическим приборам, которые предназначены для исследования состава и структуры вещества оптическими методами, а конкретнее - к поляриметричеcким приборам для измерения оптичеcкой активности сахара в растворах, например концентрации сахара в моче при диагностике и лечении сахарного диабета.
Основными требованиями, предъявляемыми к таким устройствам, являются достаточная точность измерения не хуже ± 0,1% по концентрации в диапазоне 0,1 - 8%, портативность и низкая стоимость, которую можно достичь в случае простоты конструкции. Среди простых поляриметров наибольшее распространение получили визуальные поляриметры П-161, СМ-2, СМ-3, с помощью которых измеряют угол поворота плоскости поляризации Δα исследуемой средой с известным удельным вращением плоскости поляризации [α]λ , а затем определяют процентное содержание сахара С в растворе по формуле
С = 100 Δα [α]λ -1˙L-1, где L - длина кюветы с исследуемой средой;
λ - длина волны света.
Существенными недостатками визуальных поляриметров являются низкая точность, быстрая утомляемость оператора и вызванные этим дополнительные субъективные погрешности измерений.
Существующие фотоэлектрические поляриметры [1] более точные, строятся по компенсационной схеме и содержат источник света, конденсор, диафрагму, коллиматор, неподвижный и вращающийся совместно с лимбом углоизмерительного устройства поляризационный фильтр, установленные между ними кювету с исследуемой средой, магнитооптический модулятор Фарадея, фотоприемник, усилитель и реверсивный двигатель, связанный с подвижным поляризационным фильтром. Иногда оба поляризационных фильтра устанавливают неподвижно, но между ними помещают клиновой или магнитооптический компенсаторы, управляемые следящими системами [1] . Основными недостатками таких фотоэлектрических поляриметров являются сложность конструкции, высокая стоимость, большие габариты и вес.
Упрощение, удешевление конструкции и повышение точности измерений достигаются в случае использования некомпенсационных схем. Так, наиболее близким прототипом является поляриметр для измерения концентрации сахара в моче, описанный в [2], который содержит оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой. Составной поляризационный фильтр установлен после кюветы на якоре электромеханического вибратора. Якорь поддерживается плоскими пружинами, плоскости которых параллельны друг другу. Составной поляризационный фильтр выполнен в виде двух примыкающих по линии встык друг другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра. Составной поляризационный фильтр установлен после кюветы в фокальной плоскости заднего отрезка проекционной системы, которая установлена до кюветы. Известное устройство содержит также фотоприемник, усилитель, устройство сравнения, регулирующий элемент, источник питания.
Существенными недостатками известного поляриметра для измерения концентрации сахара в моче является то, что при работе с мутной, рассеивающей свет средой (моча) невозможно получить резкое изображение диафрагмы в плоскости составного поляризационного фильтра, а положение изображения диафрагмы относительно линии стыка двух частей составного поляризационного фильтра зависит от величины клиновидности кюветы и угла поворота ее относительно оптической оси. Неконтролируемое смещение диафрагмы и его рассеяние приводят к появлению паразитной модуляции светового потока, что существенно снижает точность измерений и его достоверность.
Причем, если клиновидность кюветы можно нейтрализовать за счет установки кюветы в одном и том же положении, например, с помощью фиксаторов и т. д. , то эффект рассеяния трудно устраним даже путем фильтрации исследуемой среды.
Целью изобретения является повышение точности измерений.
Цель достигается тем, что в конструкции поляриметра, содержащей оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, электромеханический вибратор с якорем, причем составной поляризационный фильтр размещен на якоре электромеханического вибратора с параллельными плоскими пружинами, установленными в контакте с якорем, и выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник, последовательно соединенные усилитель, устройство сравнения, соединенный с источником излучения регулирующий элемент и источник питания, перед кюветой установлена линза, образующая с фокусирующей линзой телескопическую систему, составной поляризационный фильтр с электромеханическим вибратором установлен перед линзой в фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого телескопической системой изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра.
На фиг.1 показана структурная схема одного из возможных вариантов предлагаемого поляриметра для измерения концентрации сахара в моче; на фиг.2 - разрез А-А на фиг. 1; на фиг.3 показана кривая зависимости интенсивности света от угла поворота плоскости поляризации света, иллюстрирующая работу предлагаемого устройства.
Поляриметр для измерения концентрации сахара в моче содержит источник 1 излучения (фиг.1), диафрагму 2, коллиматор 3, светофильтр 4, простой поляризационный фильтр 5 и составной поляризационный фильтр 6, между которыми установлена кювета 7 с исследуемой средой 8. Составной поляризационный фильтр 6 установлен перед кюветой 7 на якоре 9 электромеханического вибратора с параллельными плоскими пружинами 10, 11, поддерживающими якорь 9. Составной поляризационный фильтр 6 выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров 12, 13 (фиг..2), плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра 5 (фиг. 1). На чертеже в качестве примера показан один из возможных вариантов ориентации поляризационных фильтров, т.е. плоскость пропускания простого фильтра 5 совпадает с плоскостью чертежа, а плоскости пропускания частей 12, 13 составного поляризационного фильтра 9 составляют соответственно углы +45о и -45о с плоскостью чертежа. Перед кюветой 7 установлена телескопическая система в виде двух линз 14, 15.
Составной поляризационный фильтр 6 установлен в фокусе телескопической системы, т.е. в фокусе линзы 14, так, что в состоянии покоя якоря 9 вибратора средняя линия проектируемого линзами 3, 14 изображения 16 диафрагмы 2 (фиг. 2) совпадает с линией стыка частей 12, 13 составного поляризационного фильтра 6. На якоре 9 укреплена пластинка 17 из магнитомягкого материала, а вблизи ее с небольшим зазором на корпусе закреплен магнитопровод 18 с зазором, выполненный также из магнитомягкого материала. На магнитопровод 18 насажена катушка 19, которая через диод 20 подключена в сеть переменного тока.
После простого поляризационного фильтра 5 установлены собирающая линза 21 и фотоприемник 22. Фотоприемник 22 через разделительную емкость 23 связан с усилителем 24, у которого коэффициент усиления регулируется при настройке. Усилитель 24 связан с индикатором 25. Одновременно фотоприемник 22 соединен с первым входом устройства 26 сравнения, к второму входу которого подключен эталонный потенциал постоянной амплитуды Uo. Выход устройства 26 сравнения соединен с регулируемым элементом 27, который включен последовательно между источником 28 тока и источником 1 излучения.
Предлагаемый поляриметр для измерения концентрации сахара в моче работает следующим образом.
Лучи от источника 1 излучения проходят щель 2, коллимационную линзу 3 и в виде параллельных лучей проходят фильтр 4. Далее квазимонохроматический свет с максимумом спектральной плотности λmax=589 нм проходит первую линзу 14 телескопической системы, составной поляризационный фильтр 6, вторую линзу 15 телескопической системы, кювету 7 с исследуемой средой 8, поляризационный фильтр 5, линзу 21 и воспринимается фотоприемником 22. При этом проекционная система, состоящая из линз 3, 14, переносит изображение щели 2 в плоскость составного поляризационного фильтра 6, который установлен так, что если диод 20 (фиг.2) обесточен и якорь 9 находится в покое, то средняя линия изображения щели 2 в виде плоскости света 16 совпадает с линией стыка частей 12, 13 составного поляризационного фильтра. С момента включения поляриметра в сеть переменный ток в виде импульсов одной полярности частоты сети ω проходит через катушку 19 и в зазоре магнитопровода 18 периодически также с частотой ω возникает магнитное поле, которое увлекает пластину 17 и якорь 9 (фиг.1) совершает колебательное движение с частотой возбуждения линии стыка частей составного поляризационного фильтра 6. При этом неполяризованный свет периодически также с частотой ω попадает то на левую часть 12 (фиг. 2), то на правую часть 13 составного поляризационного фильтра 6 (фиг. 1) и после прохождения этого фильтра становится линейно поляризованным светом, плоскость поляризации которого периодически скачком меняется от -45о до +45о. Линза телескопической системы изотропна. Поэтому линейно поляризованный свет с периодически измеряющимся азимутом плоскости поляризации проходит ее без каких-либо заметных изменений и проходит кювету 7 с исследуемой средой 8.
Если исследуемая среда 8 не обладает оптической активностью, т.е. не содержит сахара, то квазимонохроматический линейно поляризованный свет с переменным азимутом -45о или +45о проходит исследуемую среду 8 без изменений. Следовательно, интенсивность света I, воспринимаемая фотоприемником 22, после каждой смены азимута с α= -45о на α = + 45о остается постоянной и равной примерно половине интенсивности Iо падающего на составной поляризационный фильтр 6 света, что на кривой Малюса, отображающей зависимость интенсивности света I от азимута вращения плоскости поляризации α (фиг.3), можно отобразить точками 1, 2. Если исследуемая среда 8 (фиг.1) содержит сахар, т.е. обладает оптической активностью, то в зависимости от концентрации сахара С на выходе кюветы 7 и исследуемой среды 8 азимуты α линейной поляризации -45о и +45о изменяются в одну и ту же сторону на величину Δα = 0,01˙С˙L˙[α] D, где [α]D = =52,6о - удельное вращение плоскости поляризации сахара для рабочей длины волны λ= 589 нм.
В этом случае после прохождение кюветы 7 линейно поляризованный свет будет периодически скачком изменяться по азимуту от -45о + Δα до + 45о+ Δα и на выходе поляризационного фильтра 5 интенсивности света в процессе скачкообразных изменений азимута будут различными, что на фиг.3 отображено точками 3, 4, т. е. в один полупериод интенсивность света уменьшается на величину ΔI= Iosin2Δα (точка 3, фиг.3), а во второй - на ту же величину увеличивается (точка 4, фиг.3). В результате в спектре сигнала фотоприемника 22 (фиг.1) кроме постоянной составляющей, пропорциональной интенсивности света I≈0,5 Io (точка 5, фиг.3), будет присутствовать переменная составляющая частоты ω , которая пропорциональна интенсивности света ΔI (кривая 6, фиг.3). Переменная составляющая сигнала отфильтровывается с помощью емкости 23 (фиг.1), усиливается усилителем 24 и ее амплитуда измеряется, например, цифровым индикатором 25. Показания концентрации индикатором 25 согласно зависимости С = 100Δα/[α ]D L линейно связаны с длиной L кюветы 7 и с величиной измерения азимута линейной поляризации Δα . Например, при L = 95 мм С = 2Δα . Цифровой индикатор имеет цифровое табло и выход для подключения цифропечатающих устройств. Для устранения влияния поглощения света τ исследуемой среды на результаты измерений концентрации С постоянная составляющая сигнала фотоприемника 22 подается на один вход сравнивающего устройства 26, а эталонный (опорный) потенциал подается на второй вход устройства 26. Разница этих потенциалов подается на регулирующий элемент 27, который регулирует величину тока лампы 1 от источника 28 и тем самым регулирует интенсивность излучения I так, что постоянная составляющая сигнала фотоприемника 22 в независимости от поглощения τ среды всегда равна установленной заранее величине, которую принимают за единицу и устанавливают при калибровке поляриметра. Такая автоматическая регулировка единичного значения постоянной составляющей обеспечивает пропорциональность Δl= 2Δα = C, достаточную точность и простоту измерений концентрации сахара в моче.
Предлагаемый поляриметр проще и точнее существующих фотоэлектрических поляриметров не только тем, что не содержит сложных углоизмерительных устройств, компенсаторов, дорогих поляризационных призм, но и тем, что смена азимута линейной поляризации с -45о на +45о проводится до кюветы 7 с исследуемой средой 8. Установка элементов телескопической системы 14, 15 составного поляризационного фильтра 6 перед кюветой 7 исключает возможность появления паразитной модуляции света, вызванной клиновидностью защитных стекол кюветы и некоторым рассеянием исследуемой средой 8. Следовательно, достигается полезный эффект в виде повышения точности и упрощения конструкции, так как снимаются жесткие требования к конструкции кюветы 7 по клиновидности и не требуется тщательной фильтрации исследуемой среды 8.

Claims (1)

  1. ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ, содержащий оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, электромеханический вибратор с якорем, причем составной поляризационный фильтр размещен на якоре электромеханического вибратора с параллельными плоскими пружинами, установленными в контакте с якорем, и выполнен в виде двух примыкающих по линии встык одна к другой частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы + 45o и - 45o по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник последовательно соединен усилитель, устройство сравнения, соединенный с источником излучения регулирующий элемент и источник питания, отличающийся тем, что, с целью повышения точности измерений по ходу излучения, перед кюветой установлена линза, образующая с фокусирующей линзой телескопическую систему, составной поляризационной фильтр с электромеханическим вибратором установлен перед линзой с фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого телескопической системой изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра.
SU4942683 1991-06-04 1991-06-04 Поляриметр для измерения концентрации сахара в моче RU2029258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4942683 RU2029258C1 (ru) 1991-06-04 1991-06-04 Поляриметр для измерения концентрации сахара в моче

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4942683 RU2029258C1 (ru) 1991-06-04 1991-06-04 Поляриметр для измерения концентрации сахара в моче

Publications (1)

Publication Number Publication Date
RU2029258C1 true RU2029258C1 (ru) 1995-02-20

Family

ID=21577874

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4942683 RU2029258C1 (ru) 1991-06-04 1991-06-04 Поляриметр для измерения концентрации сахара в моче

Country Status (1)

Country Link
RU (1) RU2029258C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Гринштейн М.М., Ручикян Л.М. Фотоэлектрические концентраторы для автоматического контроля и регулирования, М.: Машиностроение, 1966, с.151-166. *
2. Авторское свидетельство СССР N 1803746, кл. G 01J 4/04, 1990. *

Similar Documents

Publication Publication Date Title
US6947137B2 (en) System and method for measuring birefringence in an optical material
EP0024574B1 (en) Apparatus for determining the refractive index profile of optical fibres
US2957386A (en) Refractometer
Gillham et al. New design of spectropolarimeter
RU2029258C1 (ru) Поляриметр для измерения концентрации сахара в моче
KR19980703176A (ko) 광학적 가스 분석기
GB2087551A (en) Measurement of path difference in polarized light
RU2648014C1 (ru) Поляриметр для измерения постоянной верде прозрачных веществ
US5046850A (en) Driving mechanism for driving an oscillating polarizer
RU2325630C1 (ru) Способ измерения концентрации оптически активных веществ в мутных растворах и устройство для его осуществления
US3438712A (en) Magneto-optical displacement sensing device
US3637311A (en) Optical dichroism measuring apparatus and method
SU1749783A1 (ru) Пол риметр дл измерени концетрации сахара в моче
RU1803746C (ru) Пол риметр дл измерени концентрации сахара в моче
Demidov Aspects of the zero level problem of solar magnetographs
EP0818670B1 (en) Optical pulse autocorrelator
SU1315797A1 (ru) Волоконно-оптический датчик
JP3494525B2 (ja) 光ファイバ電流計測装置
CN1306797A (zh) 自适应光学视网膜成像系统(4)
SU1185111A1 (ru) Устройство дл измерени дифференциальной лучевой скорости
RU2073834C1 (ru) Поляризационное устройство
US3561873A (en) Recording spectropolarimeter with zero-level compensator
US3510224A (en) Self-balancing spectropolarimeter with a servo loop compensated for changes in verdet constant
JPS5899761A (ja) 光による電界,磁界測定器
SU1045004A1 (ru) Устройство дл исследовани пол ризационных свойств анизотропных материалов