RU2028689C1 - Магнетрон для свч-нагрева - Google Patents

Магнетрон для свч-нагрева Download PDF

Info

Publication number
RU2028689C1
RU2028689C1 SU4954650A RU2028689C1 RU 2028689 C1 RU2028689 C1 RU 2028689C1 SU 4954650 A SU4954650 A SU 4954650A RU 2028689 C1 RU2028689 C1 RU 2028689C1
Authority
RU
Russia
Prior art keywords
magnetron
cathode
emission
cylindrical spiral
substance
Prior art date
Application number
Other languages
English (en)
Inventor
И.Г. Артюх
В.Г. Гостиев
А.С. Журков
М.В. Калинин
В.А. Круковский
А.Г. Пушкарев
В.А. Смирнов
Ю.С. Судаков
Original Assignee
Научно-исследовательский институт "Титан"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт "Титан" filed Critical Научно-исследовательский институт "Титан"
Priority to SU4954650 priority Critical patent/RU2028689C1/ru
Application granted granted Critical
Publication of RU2028689C1 publication Critical patent/RU2028689C1/ru

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

Использование: в электронных СВЧ-приборах, в частности в магнетронах непрерывного действия, используемых для СВЧ-нагрева. Сущность изобретения: магнетрон содержит вторичнно-эмиссионный катод, выполненный в виде прямонакальной цилиндрической спирали 1 и расположенный внутри замедляющей системы с лампелями 2. Шаг цилиндрической спирали катода выбран из соотношения, указанного в описании. Вторично-эмиссионный катод магнетрона выполнен из проволоки тугоплавкого металла, покрыт диспергированным эмиссионным веществом, имеющим состав, мас.%: иттрий 76 - 78; рений 0,4 - 4,0; кислород - остальное. 1 ил. ил. 9504,05036931,0661 ЭЛЕКТРОННО-ОПТИЧЕСКАЯ СИСТЕМА ДЛЯ ЭЛЕКТРОННО-ЛУЧЕВОГО ПРИБОРА. Изобретение относится к электронно-лучевым приборам (ЭЛП), а именно, к электронно-оптическим системам для ЭЛП. Сущность изобретения: система содержит группу электродов (Э) для формирования и предварительной фокусировки электронного пучка, главную бипотенциальную линзу, сформированную цилиндрами фокусирующего Э и анода (А), снабженных пружинами (П). Цилиндр (Ц) А выполнен автономно от арматуры системы и крепится в горловине (Г) ЭЛП с помощью плоских осесимметричных П рычажного типа. П размещены перпендикулярно образующей Ц А и осесимметрично оси Ц групами. Группы П расположены на одинаковом расстоянии от торцев Ц А. Число П в группе не менее двух. Кроме того, Ц А со стороны экрана ЭЛП может быть снабжен дополнительным малым Ц, жестко соединенным с Ц А и расположенным осесимметрично к его оси. Малый Ц выполнен с фланцами, формирующими на его поверхности паз, в котором размещена дополнительная крепежная П. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электронным СВЧ-приборам, в частности к магнетронам непрерывного действия, используемым для СВЧ-нагрева.
Известны магнетроны, в которых применяются цилиндрические катоды косвенного накала с покрытием из вторично-эмиссионного материала на основе окислов редкоземельных металлов [1]. Приборы импульсного действия с такими катодами имеют сравнительно высокий КПД и могут стабильно работать длительное время (несколько тысяч и более часов).
Однако, приборы непрерывного действия имеют ограниченный срок службы (несколько сотен часов) из-за малой устойчивости эмиссионного материала к электронной бомбардировке. Кроме того, катоды косвенного накала обладают большой тепловой инерционностью и время готовности магнетронов обычно составляет несколько минут.
Известны магнетроны непрерывного действия малой мощности 1 кВт для бытового СВЧ-нагрева, в которых используются прямонакальные термоэмиссионные катоды из торированного вольфрама в виде цилиндрической спирали и замедляющая система с ламелями [2]. Такие магнетроны имеют время готовности несколько секунд и выдерживают большое количество включений.
Недостатком этих магнетронов является применение радиоактивного вольфрам-ториевого сплава для катода. Здесь следует отметить, что 100 шт. спиралей катодов имеют излучение по β и γ составляющим в 10 раз, а по α составляющей в 100 раз выше фонового. Таким образом, необходима защита рабочего персонала от радиоактивного поражения, особенно при механических, химических и термических операциях (навивка, травление, отжиг, карбидирование) изготовления спиралей и на операции откачки приборов. Производство приборов должно быть сосредоточено в отдельном замкнутом помещении и обеспечено захоронение радиоактивных отходов. Кроме того, высокая рабочая температура катода 1600-1700оС приводит к потере его формоустойчивости, это ограничивает срок службы магнетрона до 1-2 тысяч часов.
Недостатком таких магнетронов является также относительно низкий КПД 55-60%, поскольку анодный ток определяется в основном термоэлектронной эмиссией катода.
Целью изобретения является создание экологически чистой конструкции, повышение КПД и срока службы магнетрона для СВЧ-нагрева.
Поставленная цель достигается тем, что в магнетроне для СВЧ-нагрева, содержащем вторично-эмиссионный катод, выполненный в виде прямонакальной цилиндрической спирали, покрытой эмиссионным веществом, и замедляющую систему с ламелями, согласно изобретению шаг h цилиндрической спирали катода выбран из соотношения
0,1 ≅ h - d ≅ H - D, где d - диаметр проволоки, мм;
Н - расстояние между центрами ламелей, мм;
D - толщина ламели, мм, а также тем, что во вторично-эмиссионном катоде, мас.%: иттрий 76-78; рений 0,4-4; кислород - остальное.
На чертеже изображена схема пространства взаимодействия заявленного магнетрона.
Магнетрон содержит вторично-эмиссионный катод, выполненный в виде прямонакальной цилиндрической спирали 1 и расположенный внутри замедляющей системы с ламелями 2.
Выполнение условия h - d ≅ H - D позволило использовать вторично-эмиссионный катод и обеспечить эффективное взаимодействие электронного потока с ВЧ-полем, увеличить КПД магнетрона на 5-10% (вместо 55-60% с термоэмиссионным вольфрам-ториевым катодом до 65-70% с предложенным катодом). При этом за счет увеличения объемного пространственного заряда режим работы прибора с требуемой выходной мощностью достигается при меньшей напряженности электрического поля у катода и анода, в результате снижается электронная бомбардировка этих электродов и увеличивается долговечность магнетрона. Экспериментально также установлено, что, когда размер щели в спирали катода больше зазора между ламелями h - d > H - D, наблюдается уменьшение предельных токов срыва из-за изменения механизма размножения электронов на катоде, так как уже значительная часть электронов, бомбардирующих катод, проваливается в щель между витками спирали. Поэтому использование конструкции магнетрона с таким соотношением параметров катода и ламелей нецелесообразно.
При изготовлении спирали, когда h - d≥ ≥0,1d, обеспечивается минимальный гарантированный зазор между витками, равный 0,1 диаметра проволоки. При меньшем зазоре возможно межвитковое замыкание спирали.
Кроме того, при таких малых зазорах между витками спираль катода практически превращается в сплошной цилиндрический катод, обеспечивающий высокую степень спонтанного размножения вторичных электронов, что приводит к росту паразитной генерации и падению КПД магнетрона.
Покрытие катода диспергированным эмиссионным материалом указанного состава, который обладает устойчивостью к электронной бомбардировке, позволяет получить высокие стабильные вторично-эмиссионные характеристики катода - коэффициент вторичной электронной эмиссии - 2,5 ± 0,1 и относительно низкую работу выхода - 3,3-3,4 эв, что обеспечивает работу магнетрона при рабочей температуре катода 1400 ± 50оС. Существенное снижение рабочей температуры катода по сравнению с прототипом позволяет увеличить долговечность магнетрона особенно в циклическом режиме включения-выключения за счет повышения формоустойчивости спирали. Предложенное эмиссионное вещество является экологически безвредным и отпадают все трудности и расходы, связанные с использованием радиоактивного материала.
Увеличение содержания иттрия более 78 мас.% и уменьшение рения менее 0,4 мас. % в эмиссионном веществе приводит к резкому снижению устойчивости катода, к электронной бомбардировке и сокращению срока службы магнетрона. Уменьшение содержания иттрия менее 76 мас.% и увеличение содержания рения более 4,0 мас.% приводит к заметному снижению тока термоэмиссии и как следствие этого к большей стартовой температуре катода при запуске магнетрона, что также сокращает его срок службы.
Были изготовлены прямоканальные катоды из вольфрамовой проволоки диаметром 0,6 мм в виде цилиндрической спирали диаметром 5 мм и длиной 10,5 мм с шагом спирали 0,8-0,9 мм. При этом шаг замедляющей спирали составлял 2,5 мм, а толщина ламелей 1,5 мм. Синтерированная рабочая поверхность спирали была покрыта диспергированным эмиссионным веществом на основе соединений иттрия, рения и кислорода с содержанием рения в количестве 0,5-2,0 мас.%. Магнетроны (типа М-105) обеспечили все необходимые параметры, включая выходную мощность. КПД таких приборов составил 65-70%.

Claims (1)

  1. МАГНЕТРОН ДЛЯ СВЧ-НАГРЕВА, содержащий вторично-эмиссионный катод, выполненный в виде прямонакальной цилиндрической спирали, покрытой эмиссионными веществом, и замедляющую систему с ламелями, отличающийся тем, что, с целью обеспечения экологически чистой конструкции, повышения КПД и срока службы, шаг h цилиндрической спирали катода выбран из соотношения
    0,1 d ≅ h - d ≅ H - D,
    где d - диаметр проволоки, мм;
    H - расстояние между центрами ламелей (шаг замедляющей системы), мм;
    D - толщина ламели, мм,
    а эмиссионное вещество имеет состав, мас.%:
    Y - 76 - 78
    Re - 0,4 - 4,0
    O - Остальное
SU4954650 1991-05-22 1991-05-22 Магнетрон для свч-нагрева RU2028689C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4954650 RU2028689C1 (ru) 1991-05-22 1991-05-22 Магнетрон для свч-нагрева

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4954650 RU2028689C1 (ru) 1991-05-22 1991-05-22 Магнетрон для свч-нагрева

Publications (1)

Publication Number Publication Date
RU2028689C1 true RU2028689C1 (ru) 1995-02-09

Family

ID=21584089

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4954650 RU2028689C1 (ru) 1991-05-22 1991-05-22 Магнетрон для свч-нагрева

Country Status (1)

Country Link
RU (1) RU2028689C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Кудинцева Г.А. и др. Термоэлектронные катоды. М.: Энергия, с.285-287. *
2. Заявка Японии N 60-185336, кл. H 01J 23/04, опублик. 20.09.85. *

Similar Documents

Publication Publication Date Title
US2411601A (en) Electronic discharge device
US4028583A (en) High power-double strapped vane type magnetron
US4461970A (en) Shielded hollow cathode electrode for fluorescent lamp
US3239745A (en) Low temperature thermionic energy converter
US2765420A (en) Lamp electrode
US3902090A (en) Short-arc gas discharge lamp
RU2028689C1 (ru) Магнетрон для свч-нагрева
US4413204A (en) Non-uniform resistance cathode beam mode fluorescent lamp
US2488716A (en) Electric high-pressure discharge tube
US2441863A (en) Electrode for discharge devices
US3013175A (en) High output discharge lamp
US3029359A (en) Thermionic electrode for discharge lamps
US2412842A (en) Electronic discharge cathode
US3328622A (en) Electric discharge device having primary and secondary electrodes
EP0042746B1 (en) Fluorescent lighting system
US2241345A (en) Electron emissive cathode
US2313646A (en) Gaseous discharge lamp
US4396856A (en) High-pressure sodium lamp
US4489254A (en) Magnetron
US2961566A (en) Fluorescent lamp
RU2051439C1 (ru) Магнетрон
US4954745A (en) Cathode structure
US3027480A (en) Electron discharge device cathodes
KR100210065B1 (ko) 마그네트론의 캐소드구조
US2985786A (en) Electric discharge device