RU2025212C1 - Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления - Google Patents

Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления Download PDF

Info

Publication number
RU2025212C1
RU2025212C1 SU5061800A RU2025212C1 RU 2025212 C1 RU2025212 C1 RU 2025212C1 SU 5061800 A SU5061800 A SU 5061800A RU 2025212 C1 RU2025212 C1 RU 2025212C1
Authority
RU
Russia
Prior art keywords
ingot
metal
mold
waveguide
walls
Prior art date
Application number
Other languages
English (en)
Inventor
А.В. Марков
В.И. Петухов
Ю.С. Асташкин
А.Н. Ракицкий
И.Л. Якименко
Original Assignee
Марков Альфред Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Марков Альфред Владимирович filed Critical Марков Альфред Владимирович
Priority to SU5061800 priority Critical patent/RU2025212C1/ru
Application granted granted Critical
Publication of RU2025212C1 publication Critical patent/RU2025212C1/ru

Links

Images

Abstract

Использование: в металлургии, а конкретно при производстве слитков или отливок из различных металлов и сплавов, а также в литейном производстве черных и цветных металлов. Сущность изобретения: способ комбинированной обработки слитка в металлической форме включает последовательную ультразвуковую обработку по мере заполнения формы металлом, причем ввод акустической энергии осуществляют как непосредственно через вмораживаемую в затвердевающий металл насадку, так и опосредованно через стенки формы, при этом ультразвуковое воздействие на стенки формы ведут с момента начала поступления металла в форму до окончания кристаллизации, и непосредственный ввод акустической энергии в затвердевающий металл ведут по мере заполнения формы, что позволяет повысить качество слитка за счет повышения эффективности ультразвуковой обработки. 3 з.п. ф-лы, 4 ил.

Description

Изобретение относится к металлургии, конкретнее к производству слитков или отливок из различных металлов и сплавов, и может быть использовано в литейном производстве черных и цветных металлов.
Известен способ ультразвуковой обработки кристаллизующегося слитка [1], включающий подачу жидкого металла в кристаллизатор-форму (изложницу), ультразвуковую вибрацию жидкого металла в нем.
Известно устройство [1] для ультразвуковой обработки кристаллизующегося слитка, содержащее емкость для жидкого металла, акустическую систему, состоящую из преобразователя и волновода. Волновод для передачи ультразвуковых колебаний может крепиться непосредственно к стенке емкости с жидким металлом или вставляться в донную часть емкости, образуя ее дно. Преобразователь может крепиться к кольцу, которое устанавливается на верх формы (кристаллизатора), внутренний размер - диаметр которой совпадает с внутренним размером - диаметром кольца.
В известном способе ультразвуковая обработка кристаллизующегося металла осуществляется через возбуждение в жидком металле ультразвукового поля, которое приводит металл в движение, причем движение и характер течения могут быть различными в зависимости от места установки ультразвуковых преобразователей на стенке формы. Поле, наведенное в металле, может быть аксиальным, радиальным или поперечным по отношению к наружной стенке формы.
Аксиальное направление поля генерируется путем установки волновода с вибратором в донной части формы. Радиальное поле формируется кольцом с волноводами-вибраторами, которое устанавливается на верхнюю часть формы. Поперечное поле возбуждается установкой преобразователей по всей высоте формы на различных горизонтах перпендикулярно оси слитка.
Известный способ имеет существенный недостаток, происходящий из-за ввода акустической энергии в жидкий металл локально по отношению к обрабатываемому объему, что создает неравномерность в обработке жидкой ванны.
Известный способ имеет еще один недостаток, который происходит из-за неучета процесса развития усадки в слитке при кристаллизации, сопровождающейся отходом слитка от стенок формы с образованием газового зазора. Это приводит к нарушению акустического контакта между вибрирующей поверхностью и слитком. Время обработки слитка в процессе кристаллизации сокращается, и эффективность воздействия снижается.
Этот недостаток прежде всего относится к устройству, где ввод акустической энергии осуществляется через стенки формы.
При вводе через донну часть слитка неравномерность обработки происходит из-за затухания акустической энергии по высоте слитка. Чем больше высота слитка, тем сильнее будет выражена неравномерность обработки донной части слитка и зоны, кристаллизующейся у зеркала.
Недостатком конструкции устройства является негарантированность акустического контакта между волноводом и жидким металлом.
Акустический контакт может быть обеспечен только при адгезии-приваре жидкого металла к поверхности волновода или кольца, излучающего в жидкий металл. В конструкции не предусматривается решение этого вопроса. Отсутствие акустического контакта исключает возможность возбуждения акустического поля, и обработки расплава происходить не будет.
Техническим результатом изобретения является повышение эффективности ультразвуковой обработки слитка и его качества.
Эффективная обработка расплава может быть достигнута в случае учета особенности затвердевания прямоугольного слитка с небольшой толщиной в сравнении с шириной. Усадка в таком слитке развивается неравномерно - сначала против узких стенок и постепенно переходит к широким. Такая последовательность обусловлена ферростатическим напором, который затрудняет усадку пропорционально площади стенок.
Для возбуждения ультразвуковых колебаний в объеме слитка с учетом развития усадки во время кристаллизации предлагается подводить акустическую энергию комбинированно, - к широким стенкам отливки путем возбуждения в самой стенке ультразвуковой вибрации, а через узкие - непосредственно к отливке, таким образом, чтобы поверхность волновода акустической системы находилась непосредственно в контакте сначала с жидким металлом, а потом с оболочкой кристаллизующейся отливки. В этом случае можно достигнуть наибольшего эффекта передачи ультразвуковой энергии в слиток, т.к. учитывается развитие усадочных процессов в слитке. Усадка оболочки слитка против узкой стенки начинается сразу же после заполнения формы. Контакт волновода с жидким металлом приводит к намораживанию металла и образованию акустического контакта с момента начала кристаллизации.
Для осуществления предлагаемого способа в основу положен принцип ввода акустической энергии одновременно через волновод-излучатель, находящийся в непосредственном контакте с жидким металлом, и через стенку формы, т.е. опосредованно. Равномерность обработки достигается благодаря установке волноводов-излучателей по высоте и периметру стенок формы. Таким образом объем жидкого металла как бы условно разбивается на несколько автономных с излучателями, работающими на этот объем.
С момента поступления жидкого метала в форму ввод акустической энергии осуществляется комбинированно - через стенки и прямо в жидкий металл. Развитие усадки при таком способе ввода акустической энергии приводит только к перераспределению ввода акустической энергии от стенок к волноводам-излучателям, вмороженным в слиток.
В зависимости от геометрии металлической формы расположение волноводов-излучателей имеет следующие особенности.
В случае прямоугольного сечения с соотношением узкой стороны к широкой 1: 5 более непосредственный ввод акустической энергии осуществляют через узкие стенки, а опосредованный ввод - через широкие.
В случае прямоугольного сечения с соотношением сторон от 1:1 до 1:5 непосредственный и опосредованный ввод акустической энергии ведут на каждой из сторон.
Для круглого или овального сечения слитка непосредственный и опосредованный вводы акустической энергии чередуют в каждом сечении формы по высоте слитка.
На фиг. 1 представлена металлическая форма прямоугольного профиля в горизонтальном сечении с соотношением сторон 1:5 и более; на фиг.2 - ее вертикальное сечение; на фиг.3 - металлическая форма прямоугольного профиля в горизонтальном сечении с соотношением сторон менее 1:5, на фиг.4 - металлическая форма круглого профиля в горизонтальном сечении.
На фиг.1-4 изображены форма 1 (фиг.1) для кристаллизующегося расплава, волновод-излучатель 2, работающий на стенку формы, волновод-излучатель с насадкой 3 из металла того же химического состава, что разливается в слиток, соединитель 4, электромеханический преобразователь 5, форма 6 (фиг.3) для кристаллизующегося расплава, волновод-излучатель 7 с насадкой 8 того же химического состава, что разливается в слиток, соединитель 9, электромеханический преобразователь 10, форма 11 круглого сечения (фиг.4) для кристаллизующегося расплава, волновод-излучатель с насадкой 12 того же химического состава, что разливается в слиток, соединитель 13, электромеханический преобразователь 14.
Длина волновода-излучателя для всех устройств на фиг.1, 2, 3, 4 равна половине длины ультразвуковой волны в материале волновода λ/2 при рабочей частоте электромеханического преобразователя или кратна его длине. Длина волны λ равна С/f, где f - рабочая частота 20200 Гц; С - скорость звука в материале волновода, равная 5170 м/с; Е - модуль упругости материала волновода, равный 21˙ 103 кг/мм2, ρ - плотность материала волновода 7,8 г/см
Figure 00000001
C =
Figure 00000002
.
Устройство работает на фиг. 1/2 следующим образом.
Перед подачей металла производится включение электромеханических преобразователей 5, которые возбуждают ультразвуковые колебания в стенках кокиля с помощью волновода-излучателя 2. Затем производится подача жидкого металла. По мере подъема жидкого металла от дна к верхним горизонтам, когда уровень металла достигнет нижнего ряда волноводов с насадками 3 и поднимется выше, производят включение электромеханических преобразователей 5, возбуждающих волноводы с насадками.
Поверхность насадка 3 имеет сродство к жидкому металлу благодаря тому, что их материалы одинаковы. За счет этого происходит привар насадки к слитку, обеспечивающий акустический контакт между слитком и волноводом. Далее, когда уровень металла достигнет следующего горизонта волноводов с насадками 3, производят включение очередного ряда электромеханических преобразователей. После заполнения формы электромеханические преобразователи остаются включенными до окончания процесса кристаллизации слитка.
П р и м е р. Проводили плавку, разливку и последующую ультразвуковую обработку хрома. В индукционной печи был выплавлен хром. Хром был залит в изложницу размером 15 х 140 мм, в которой были установлены волноводы с размерами 130,0 и 136,0 мм. Одни волноводы размерами 130,0 мм крепились к стенке, другие волноводы с размерами 136,0 мм проходили через отверстие в стенке изложницы и имели насадку из чистого хрома диаметром 20 мм и высотой 6 мм. Хром поступал из печи в изложницу, причем волноводы, которые крепились к стенке, возбуждались до поступления металла, а волноводы с насадками из хрома включались по мере поступления металла в изложницу. Ультразвуковое воздействие прекращали после полного затвердевания слитка. Анализ образцов, вырезанных из слитка после ультразвуковой обработки, показал, что во всем поперечном сечении слитка имело место измельчение зерна, в то время как в результате обработки по способу-прототипу измельчение зерна проходило только в поверхностной зоне слитка.

Claims (4)

1. Способ комбинированной обработки слитка в металлической форме, включающий ультразвуковую обработку металла с начала поступления его в форму и до окончания кристаллизации непосредственно через волновод, вмораживаемый в слиток, отличающийся тем, что ультразвуковую обработку дополнительно осуществляют волноводом через стенки формы.
2. Способ по п.1, отличающийся тем, что ультразвуковую обработку слитка прямоугольного сечения, имеющего соотношения сторон более 1 : 5, через волновод, вмораживаемый в слиток, ведут со стороны узких стенок, а дополнительную ультразвуковую обработку ведут через широкие стенки.
3. Способ по п. 1, отличающийся тем, что слитки круглого сечения и слитки прямоугольного сечения, имеющие соотношение сторон от 1 : 1 до 1 : 5, подвергают ультразвуковой обработке через волновод, вмораживаемый в слиток, и дополнительной ультразвуковой обработке через стенки при чередовании установки их волноводов по высоте формы и по ее периметру.
4. Устройство для ультразвуковой обработки слитка в металлической форме, содержащее преобразователь, соединенный через волновод с насадкой, отличающееся тем, что насадка выполнена из металла, имеющего химический состав, аналогичный металлу слитка.
SU5061800 1992-09-08 1992-09-08 Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления RU2025212C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5061800 RU2025212C1 (ru) 1992-09-08 1992-09-08 Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5061800 RU2025212C1 (ru) 1992-09-08 1992-09-08 Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2025212C1 true RU2025212C1 (ru) 1994-12-30

Family

ID=21613091

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5061800 RU2025212C1 (ru) 1992-09-08 1992-09-08 Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2025212C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент Великобритании N 1594977, кл. B 22D 27/20 (B 3F), опублик. 05.08.81. *

Similar Documents

Publication Publication Date Title
US5355935A (en) Method and device for vibrating an ingot mould for the continuous casting of metals
JP2008173668A (ja) 凝固方法
KR100939699B1 (ko) 이동하는 전기 아크에 의한 용융 금속의 처리
US4662427A (en) Vibrating ingot mold for continuous casting of metals
US3447587A (en) Method and device for mold casting utilizing sonic energization
CN1332773C (zh) 一种改进的振动激发金属液形核的方法及装置
RU2025212C1 (ru) Способ комбинированной обработки слитка в металлической форме и устройство для его осуществления
RU96117378A (ru) Устройство для непрерывной разливки и способ изготовления тонких плоских слитков
EP0042007A1 (en) Continuous casting mold
TW372203B (en) Process for refining, by an electromagnetic cavitation effect, the microstructure of metals and alloys charge cast by the "HOT TOP" technique
US4291742A (en) Method and apparatus for obtaining an ingot
JPS55149753A (en) Continuous casting method of bloom
JPH0455772B2 (ru)
US3397733A (en) Method for removal of gas from molten metal during continuous casting
JP2917223B2 (ja) 金属の凝固組織微細化鋳造方法
RU2132252C1 (ru) Способ получения слитка
JPH01249255A (ja) 連続鋳造方法
JPS6143143B2 (ru)
SU1148698A1 (ru) Способ непрерывной разливки металлов
SU1342592A1 (ru) Способ получени слитка
US3552481A (en) Apparatus for removing gas from molten metal during continuous casting
SU899239A1 (ru) Способ непрерывной разливки алюмини
Smirnov et al. Influence of Combined Vibration with Cavitation and Electromagnetic Impact on the Cast Aluminium Alloy Grain Refining.
SU789215A1 (ru) Способ полунепрерывного лить чугунных труб
SU1424946A1 (ru) Способ виброобработки жидкого металла