RU2023202C1 - Ветроагрегат - Google Patents

Ветроагрегат Download PDF

Info

Publication number
RU2023202C1
RU2023202C1 SU4700500A RU2023202C1 RU 2023202 C1 RU2023202 C1 RU 2023202C1 SU 4700500 A SU4700500 A SU 4700500A RU 2023202 C1 RU2023202 C1 RU 2023202C1
Authority
RU
Russia
Prior art keywords
wings
rotor
cylinders
shaft
wind
Prior art date
Application number
Other languages
English (en)
Inventor
Петр Викторович Светлов
Original Assignee
Петр Викторович Светлов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Петр Викторович Светлов filed Critical Петр Викторович Светлов
Priority to SU4700500 priority Critical patent/RU2023202C1/ru
Application granted granted Critical
Publication of RU2023202C1 publication Critical patent/RU2023202C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

Использование: преобразование энергии ветра. Сущность изобретения: ветроагрегат электропитания содержит основание, несущую конструкцию, выполненную в виде башни, жестко связанные с ней центральный узел и радиальные крылья (как вариант - телескопические или установленные шарнирно), аэродинамические элементы, установленные на концах радиальных крыльев на вертикальных осях с возможностью вращения (как вариант - установленные симметрично горизонтальной плоскости радиальных крыльев) и генератор. Радиальные крылья расположены в одной горизонтальной плоскости, а аэродинамические элементы выполнены в виде вертикальных осей, установленных на концах крыльев, и цилиндров, размещенных на осях с возможностью вращения, симметрично горизонтальной плоскости. Крылья выполнены телескопическими с выдвижными частями, противоположные из которых связаны друг с другом при помощи гибкой тяги, а центральный вал ротора снабжен барабаном, установленным с возможностью вращения относительно вала, и электромагнитной муфтой, размещенной между барабаном и валом. Ротор снабжен механизмом изменения угла отклонения крыльев и аэродинамических элементов, центральный узел выполнен в виде крестовины, а крылья связаны с ней и аэродинамическими элементами при помощи шарниров. 3 з.п.ф-лы, 4 ил.

Description

Изобретение относится к энергетическому машиностроению, в частности к ветроагрегатам электропитания и может быть использовано при создании ветроэлектростанций.
Известны ветроагрегаты с ветродвигателями с горизонтальной осью вращения, установленные на башне высотой несколько десятков метров. В частности, на башне, высотой 30,5 м на горизонтальном валу 100 киловаттного генератора установлен пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Известны ветроагрегаты с ветродвигателями с вертикальной осью вращения различных конструкций [1].
Наиболее близким к предлагаемому техническому решению по технической сущности является ветроагрегат, включающий ротор с вертикальной осью вращения, установленный на инерционном диске с кольцевой обечайкой погруженной в жидкость с образованием воздушной подушки и снабженный генератором с кольцевым статором и сферическим ротором [2].
Недостатком такого агрегата является большая материалоемкость, нерегулируемые скорость вращения и момент инерции (прототип).
Цель технического решения - снижение материалоемкости, повышение надежности и расширение пределов регулирования параметров агрегата.
Это достигается тем, что неподвижные цилиндры и цилиндры ротора соединены при помощи подшипников, несущая конструкция выполнена в виде башни, жестко связанного с ней центрального узла и радиальных крыльев, связанных с узлом.
Радиальные крылья расположены в одной плоскости, а аэродинамические элементы выполнены в виде вертикальных осей, установленных на концах крыльев, и цилиндров, размещенных на осях с возможностью вращения, симметрично горизонтальной плоскости.
Крылья выполнены телескопическими с выдвижными частями, противоположные из которых связаны друг с другом при помощи гибкой тяги, а центральный вал ротора снабжен барабаном, установленным с возможностью вращения относительно вала, и электромагнитной муфтой, размещенной между барабаном и валом.
Ротор снабжен механизмом изменения угла отклонения крыльев и аэродинамических элементов, центральный узел выполнен в виде крестовины, а крылья связаны с ней и аэродинамическими элементами при помощи шарниров.
На фиг. 1 изображен турбоветроагрегат электропитания, вертикальный разрез; на фиг. 2 - супертурбоветроагрегат, вертикальный разрез; на фиг. 3 - рабочий элемент ротора агрегата с опорой вращения, вертикальный разрез; на фиг. 4 - общий вид супертурбоветроагрегата электропитания.
Ветроагрегат электропитания Светлова (ВЭС) включает (фиг. 1) опору 1 с коаксиальными неподвижными цилиндрами 2, ветряной ротор, жестко связанный с несущей конструкцией, выполненной в виде башни, состоящей из центрального узла и прикрепленных к нему снизу цилиндров 3, перекрытых герметичной крышкой 4 и расположенных коаксиально неподвижным, два стакана 5, образующих все вместе кольцевые полости, заполненные жидкостью. Центральный вал 6 жестко соединен с несущей конструкцией и ротором генератора ВЭСа, а статор 7 последнего размещен внутри неподвижного цилиндра 2. Цилиндры 3 ветряного ротора соединены с неподвижными цилиндрами 2 при помощи подшипников, установленных на валу 6. На радиальных крыльях (РК) 8, жестко связанных с центральным узлом, установлены на опорных устройствах 9 аэродинамические элементы (АЭ) 10, выполненные в виде продолжения подвижных цилиндров опорных устройств 9 (Турбовэс) или, как вариант, в виде паруса-крыла (ВЭС). Статор 11 электропривода АЭ 10 установлен внутри на стакане 12, а ротор 13 с валом установлен одним концом на крышке 14, другим - на основании опорного устройства 9 на подшипниках. Верхние концы АЭ 10 установлены на подшипниках на концах радиальных крыльев 15, установленных на валу 16. Неподвижная крестовина 17 соединена с фундаметом гибкой связью 18.
Агрегат (фиг. 2) включает РК 8, расположенные в одной горизонтальной плоскости, АЭ 10, выполненные в виде вертикальных осей 19, жестко установленных на концах РК 8, и цилиндров, размещенных на осях 19 с возможностью вращения симметрично горизонтальной плоскости и снабженных электроприводами с вращающимся статором 11 и неподвижным ротором, выполненным на оси 19. АЭ 10 могут быть выполнены в виде паруса-крыла или цилиндров и могут быть установлены на опорных устройствах, выполненных как показано на фиг. 3.
Супермаховиковый агрегат (фиг. 2) с переменным моментом инерции включает РК 8, выполненные телескопическими с выдвижными частями, причем противоположные выдвижные части соединены между собой при помощи гибкой тяги 20, намотанной на барабан 21, установленный подвижно на валу 6 и соединенный с последним электромагнитной муфтой (ЭМ) 22, установленной на шлицах также на валу 6. На внутреннем цилиндре 2 установлено тормозное устройство 23 барабана 21, а внутри цилиндра 2 расположены, например, технические помещения 24 с аппаратурой управления. Выдвижные части РК 8 могут жестко фиксироваться внутри неподвижных частей РК 8, например, с помощью тормозов с электромагнитным приводом (не показаны). АЭ 10 могут быть выполнены телескопическими в виде паруса-крыла (СуперВЭС) или цилиндров (СупертурбоВЭС) и снабжены электроприводами с вращающимся статором 11 и неподвижным ротором 13.
Супермаховиковый агрегат (фиг. 4) включает РК 8, установленные шарнирно на осях 25 на центральном узле 26, выполненном, например, в виде крестовины, установленной на подвижных цилиндрах 3. Оси 19 с АЭ 10 установлены на концах РК 8 также шарнирно на осях 27. Ротор снабжен механизмами изменения угла отклонения РК 8 и АЭ 10, выполненными, например, в виде зубчатых секторов 28 на верхнем конце РК 8 и на фигурной оси 19 и электроприводов с ведущей шестеренкой (не показаны) или, как вариант для РК 8, в виде червячной передачи с червяком, установленным в центре башни, входящим в зацепление одновременно со всеми зубчатыми секторами 28. АЭ 10 могут быть выполнены в виде паруса-крыла или цилиндров и снабжены электроприводами.
ВЭС (фиг. 1) работает следующим образом. Ротор ветродвигателя с АЭ 10, установленный на определенной высоте на цилиндрах 3, вращается на воздушной подушке, созданной столбом жидкости в полости стаканов 5 под герметичной крышкой 4, при этом цилиндры 3 выполняют одновременно функции башни и опоры вращения ротора ветродвигателя. Ротор, соединенный с валом 6 и с ротором генератора ВЭС, приводится во вращение с помощью АЭ 10, управляемых с помощью исполнительных двигателей. Подшипники вала 6 выполняют функции направляющих подшипников цилиндров 3 и генератора, а неподвижный цилиндр 2 выполняет также функции корпуса генератора 7, что вместе существенно повышает мощность и снижает металлоемкость ВЭСа. АЭ 10, выполненные в виде цилиндров, установленных в опорах вращения 9, приводятся во вращение вокруг своих осей с помощью электроприводов со статором 11 и ротором 13. В соответствии с эффектом Магнуса при вращении цилиндра вследствие сил вязкости воздуха в движение вовлекаются его слои, соприкасающиеся с поверхностью цилиндра. На одной из сторон цилиндра направление вращающихся частиц воздуха в этих слоях совпадает с направлением ветра - скорость их увеличится, а давление в этих слоях падает. На противоположной стороне цилиндра "прилипшие" к его поверхности частицы столкнутся со встpечным потоком воздуха - здесь скорость уменьшится, а давление возрастет. Таким образом возникает аэродинамическая сила, приводящая ротор во вращение, причем независимо от места расположения АЭ 10, сила направлена перпендикулярно направлению ветра в любой точке окружности вращения последних, т. е. нет необходимости управления их углом атаки. Управление аэродинамической силой, а также скоростью вращения ротора производится путем регулирования (подбора) скорости вращения АЭ 10 вокруг своих осей с помощью системы автоматического управления (САУ). При установке в качестве АЭ 10 паруса-крыла, угол атаки последних может регулироваться с помощью исполнительных электроприводов, установленных также внутри опор вращения 9. Ротор 13 электропривода подвешен и вращается на герметичной крышке 14 опорного устройства 9 вместе с АЭ 10, при этом направляющие и опорные подшипники вала ротора 13 выполняют те же функции для опорного устройства 9 и АЭ 10, а стакан 12 опорного устройства 9 выполняет функции корпуса статора 11 электропривода.
Агрегат с двумя АЭ 10 на концах осей 19 (фиг. 2) работает следующим образом. АЭ 10 приводятся во вращение вокруг своих осей с помощью встроенных электроприводов с вращающимся статором 11 и с неподвижным ротором 13. Скорость вращения АЭ 10, установленных на разных уровнях на концах осей 19, различна и зависит от скорости и силы ветра данного АЭ 10. Угол атаки АЭ 10, выполненных в виде паруса-крыла, устанавливается также с помощью встроенных исполнительных электроприводов.
Агрегат с РК 8, выполненными с выдвижными частями, (фиг. 2) работает вышеуказанным способом, например, в заданном режиме с определенной скоростью вращения при установившейся скорости ветра. АЭ 10 под действием центробежных сил (ЦБС) стремятся растянуть РК 8, которые удерживаются в заданном положении с помощью гибкой тяги 20 и электромагнитных тормозов. Например, скорость и сила ветра увеличились. Следовательно скорость движения (окружная) АЭ 10 тоже увеличится. Чтобы сохранить заданную скорость вращения ротора, увеличивается радиус последнего и скорость вращения АЭ 10 вокруг своих осей, при этом угловая скорость вращения ротора остается постоянной, а окружная скорость АЭ 10 увеличится. Для этого ЭМ 22 на определенное время выводится из зацепления с барабаном 21 и выдвижные части РК 8 с АЭ 10 на концах под действием ЦБС выдвигаются на определенную длину, размотав гибкую тягу 20 с барабана 21. Таким образом, при периодическом выключений ЭМ 22, радиус ротора постепенно увеличивается до нужных при данной скорости и силе ветра размеров, при этом увеличиваются мощность, а также момент инерции ротора, т. е. происходит постепенное накопление энергии ветра в виде кинетической энергии тела вращения как в супермаховиковом аккумуляторе энергии. Чем больше скорость и сила ветра, тем на больший радиус вращения выводятся АЭ 10. РК 8 из-за больших центробежных сил в большей степени работают на растяжение, чем на изгиб, что позволяет выполнить их облегченными. При уменьшении скорости и силы ветра (которые в течение дня меняются) скорость вращения ротора поддерживается заданной за счет накопленной энергии и уменьшения радиуса ротора до минимального. Для этого ЭМ 22 выводится из зацепления с барабаном 21, который одновременно притормаживается тормозным устройством 23 и РК 8, опережая вращение барабана 21, наматывают гибкую тягу 20 на последний, втягивая выдвижные части РК 8 вовнутрь. Последние могут быть жестко зафиксированы внутри РК 8 с помощью электромагнитных тормозов (не показаны).
Агрегат с РК 8, установленными шарнирно на центральном узле 26 (фиг. 4), работает следующим образом. Ротор приводится во вращение вышеуказанным способом, при этом РК 8 с АЭ 10 на концах под действием центробежных сил стремятся увеличить свой радиус вращения и подняться в верх. Регулирование угла отклонения РК 8 и установка АЭ 10 вертикально производится с помощью механизмов изменения угла отклонения с зубчатыми секторами 28 при одновременном уравновешивании АЭ 10 на осях 27, выполненных телескопическими, изменением их длины. При увеличении скорости и силы ветра концы РК 8 с АЭ 10 под действием центробежных сил и механизмов изменения угла отклонения поднимаются выше и увеличивают радиус вращения ротора, при этом скорость вращения ротора остается постоянной, а мощность и момент инерции увеличиваются. РК 8 из-за больших центробежных сил работают больше на растяжение, чем на изгиб, что позволяет выполнить их облегченными. При уменьшении силы и скорости ветра концы РК 8 с АЭ 10 опускаются ниже, при этом происходит расход ранее накопленной энергии и скорость вращения ротора сохраняется заданной.
Положительный эффект предлагаемого технического решения по сравнению с прототипом состоит в том, что предлагаемые ВЭСы просты в управлении и менее материалоемки. Предлагаемые ВЭСы можно строить мощностью, равной десяткам МВт, какая в настоящее время не существует.

Claims (4)

1. ВЕТРОАГРЕГАТ, содержащий основание, установленную на нем опору с коаксиальными неподвижными цилиндрами, ветряной ротор, выполненный в виде центрального вала, жестко связанной с ним несущей конструкции, прикрепленных к ней снизу цилиндров, расположенных коаксиально неподвижным и образующих с ним кольцевые полости, заполненные жидкостью и перекрытые герметичными крышками, и рабочих аэродинамических элементов, установленных на несущей конструкции, и генератор со статорной обмоткой, размещенной в одном из неподвижных цилиндров и роторной частью закрепленной на цилиндре ротора, отличающийся тем, что, с целью снижения материалоемкости, повышения надежности и расширения пределов регулирования параметров агрегата, неподвижные цилиндры и цилиндры ротора соединены при помощи подшипников, несущая конструкция выполнена в виде башни, жестко связанного с ней центрального узла и радиальных крыльев, связанных с узлом.
2. Агрегат по п.1, отличающийся тем, что радиальные крылья расположены в одной горизонтальной плоскости, а аэродинамические элементы выполнены в виде вертикальных осей, установленных на концах крыльев, и цилиндров, размещенных на осях с возможностью вращения симметрично горизонтальной плоскости.
3. Агрегат по п.1, отличающийся тем, что крылья выполнены телескопическими с выдвижными частями, противоположные из которых связаны одна с другой при помощи гибкой тяги, а центральный вал ротора снабжен барабаном, установленным с возможностью вращения относительно вала, и электромагнитной муфтой, размещенной между барабаном и валом.
4. Агрегат по пп.1 и 2, отличающийся тем, что ротор снабжен механизмом изменения угла отклонения крыльев и аэродинамических элементов, центральный узел выполнен в виде крестовины, а крылья связаны с ней и аэродинамическими элементами при помощи шарниров.
SU4700500 1989-06-09 1989-06-09 Ветроагрегат RU2023202C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4700500 RU2023202C1 (ru) 1989-06-09 1989-06-09 Ветроагрегат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4700500 RU2023202C1 (ru) 1989-06-09 1989-06-09 Ветроагрегат

Publications (1)

Publication Number Publication Date
RU2023202C1 true RU2023202C1 (ru) 1994-11-15

Family

ID=21451922

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4700500 RU2023202C1 (ru) 1989-06-09 1989-06-09 Ветроагрегат

Country Status (1)

Country Link
RU (1) RU2023202C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637161C2 (ru) * 2015-12-04 2017-11-30 Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования "Академия гражданской защиты МЧС России" (ФГБОУ ВПО "Академия гражданской защиты МЧС России") Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации пос Высотная ветроэнергетическая станция воздушного размещения

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Ветроэнергетика, пер. с англ., М., Энергоиздат, 1982. *
2. Патент СССР N 1568894, кл. F 03D 3/00, 1988. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637161C2 (ru) * 2015-12-04 2017-11-30 Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования "Академия гражданской защиты МЧС России" (ФГБОУ ВПО "Академия гражданской защиты МЧС России") Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации пос Высотная ветроэнергетическая станция воздушного размещения

Similar Documents

Publication Publication Date Title
JP5704464B2 (ja) モータトルクが補償される風力タービン
US5419683A (en) Wind turbine
EP0086076B1 (en) A horizontal axis wind energy conversion system with aerodynamic blade pitch control
EP1482172B1 (en) Rotor supporting structure of a windmill
US4692094A (en) Rotary positionable installation
AU2002322125B2 (en) Coaxial multi-rotor wind turbine
EP2561222B1 (en) Vertical axis wind turbine
US4545729A (en) Wind turbine apparatus
US20050169742A1 (en) Wind turbine
CN106762465B (zh) 风力发电机组
US20100045039A1 (en) Vertical axis wind turbine
EP0236036A2 (en) Wind turbine
AU2012100203A4 (en) Multiple Generator Wind Turbines with Rotary Blade Cage
US10132293B2 (en) Vertical axis wind turbine and method for operating such a turbine
US8053919B1 (en) Wind turbine power generator
JP2013534592A (ja) 垂直軸風車
EP1902216B1 (en) Wind-turbine with load-carrying skin
CN102979667A (zh) 一种风力发电机叶轮
RU2023202C1 (ru) Ветроагрегат
KR20240013684A (ko) 구멍들을 정렬시키기 위한 장치
KR101988162B1 (ko) 멀티형 풍력 발전기 및 이의 제어방법
GB2468863A (en) Vertical Axis Wind Turbine with non-newtonian fluid damped auto pitching and air brake
CN110425096A (zh) 一种塔扇风力发电机组
RU2205292C1 (ru) Ветроэнергетическая установка
CN112682261A (zh) 一种新型流体发电装置