RU2019100594A - The method of matching the rotor and armature magnetic circuits in two-dimensional electrical generator machines - Google Patents

The method of matching the rotor and armature magnetic circuits in two-dimensional electrical generator machines Download PDF

Info

Publication number
RU2019100594A
RU2019100594A RU2019100594A RU2019100594A RU2019100594A RU 2019100594 A RU2019100594 A RU 2019100594A RU 2019100594 A RU2019100594 A RU 2019100594A RU 2019100594 A RU2019100594 A RU 2019100594A RU 2019100594 A RU2019100594 A RU 2019100594A
Authority
RU
Russia
Prior art keywords
air gap
rotor
armature
magnetic
calculated final
Prior art date
Application number
RU2019100594A
Other languages
Russian (ru)
Other versions
RU2019100594A3 (en
RU2726867C2 (en
Inventor
Багаудин Хамидович Гайтов
Яков Михайлович Кашин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2019100594A priority Critical patent/RU2726867C2/en
Publication of RU2019100594A3 publication Critical patent/RU2019100594A3/ru
Publication of RU2019100594A publication Critical patent/RU2019100594A/en
Application granted granted Critical
Publication of RU2726867C2 publication Critical patent/RU2726867C2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Synchronous Machinery (AREA)

Claims (10)

Способ согласования магнитопроводов ротора и якоря в двухмерных электрических машинах-генераторах, изготовленных с использованием магнитопроводов якоря с щеточно-коллекторным узлом машин постоянного тока и статора машин переменного тока, используемого в качестве внешнего ротора, при котором определяют начальный существующий воздушный зазор δн между магнитопроводами внешнего ротора и внутреннего якоря по формуле:A method for matching rotor and armature magnetic circuits in two-dimensional electric generator machines made using armature magnetic circuits with a brush-collector assembly of DC machines and the stator of AC machines used as an external rotor, in which the initial existing air gap δ n between the external magnetic circuits is determined rotor and internal anchor according to the formula:
Figure 00000001
Figure 00000001
где Dp - внутренний диаметр магнитопровода внешнего ротора, Da - внешний диаметр магнитопровода внутреннего якоря,where Dp is the inner diameter of the magnetic circuit of the outer rotor, Da is the outer diameter of the magnetic circuit of the inner armature, затем рассчитывают необходимый расчетный конечный воздушный зазор δкр по формуле:then calculate the required calculated final air gap δ cr by the formula:
Figure 00000002
Figure 00000002
где А - линейная нагрузка, Вδо - максимальная индукция в воздушном зазоре при холостом ходе и номинальном напряжении, τ - полюсное деление, xd* - синхронное индуктивное сопротивление по продольной оси,where A is the linear load, B δo is the maximum induction in the air gap at idle and rated voltage, τ is the pole division, x d * is the synchronous inductive resistance along the longitudinal axis, находят разность между начальным воздушным зазором δн и расчетным конечным воздушным зазором δкр по формуле:find the difference between the initial air gap δ n and the calculated final air gap δ cr by the formula:
Figure 00000003
Figure 00000003
где Δ - разность между начальным воздушным зазором между магнитопроводами внутреннего якоря и внешнего ротора и расчетным конечным воздушным зазором, δн - начальный воздушный зазор между магнитопроводами внутреннего якоря и внешнего ротора, δкр - расчетный конечный воздушный зазор,where Δ is the difference between the initial air gap between the magnetic cores of the inner armature and the outer rotor and the calculated final air gap, δ n is the initial air gap between the magnetic cores of the inner armature and the outer rotor, δ cr is the calculated final air gap, отличающийся тем, что после определения разности между начальным воздушным зазором δн между магнитопроводами внутреннего якоря и внешнего ротора и расчетным конечным воздушным зазором δкр подбирают металлическую трубку с толщиной стенки, равной рассчитанной разности Δ=δнкр={[(Dp-Da)/2]-δкр} между начальным воздушным зазором δн и расчетным конечным воздушным зазором δкр, в которую затем впрессовывают магнитопровод внутреннего якоря.characterized in that after determining the difference between the initial air gap δ n between the magnetic circuits of the inner armature and the outer rotor and the calculated final air gap δ cr, a metal tube with a wall thickness equal to the calculated difference Δ = δ ncr = {[(Dp- Da) / 2] -δ cr } between the initial air gap δ n and the calculated final air gap δ cr , into which the magnetic core of the internal armature is then pressed.
RU2019100594A 2019-01-10 2019-01-10 Matching method of magnetic conductors of rotor and armature in two-dimensional electric machines-generators RU2726867C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100594A RU2726867C2 (en) 2019-01-10 2019-01-10 Matching method of magnetic conductors of rotor and armature in two-dimensional electric machines-generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100594A RU2726867C2 (en) 2019-01-10 2019-01-10 Matching method of magnetic conductors of rotor and armature in two-dimensional electric machines-generators

Publications (3)

Publication Number Publication Date
RU2019100594A3 RU2019100594A3 (en) 2020-07-10
RU2019100594A true RU2019100594A (en) 2020-07-10
RU2726867C2 RU2726867C2 (en) 2020-07-16

Family

ID=71509358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100594A RU2726867C2 (en) 2019-01-10 2019-01-10 Matching method of magnetic conductors of rotor and armature in two-dimensional electric machines-generators

Country Status (1)

Country Link
RU (1) RU2726867C2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH516885A (en) * 1970-05-20 1971-12-15 Bbc Brown Boveri & Cie Electric machine with a device for monitoring the air gap
JPH0817554A (en) * 1994-07-04 1996-01-19 Gomi Shoji Kk Animals and plants rearing heater
RU2332775C1 (en) * 2006-12-05 2008-08-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Two-dimensional electrical machine-generator
RU2496211C1 (en) * 2012-03-11 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Harmonising method of magnetic conductors of rotor and armature in two-dimensional electric machines - generators

Also Published As

Publication number Publication date
RU2019100594A3 (en) 2020-07-10
RU2726867C2 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
KR101500369B1 (en) Stator core iron loss measuring structure of motor
CN202004611U (en) Cage rotor of self-starting permanent magnet synchronous motor
CN105245076A (en) Single-phase permanent-magnet synchronous motor with U-shaped iron core and self-starting method of single-phase permanent-magnet synchronous motor
Ugale et al. A new rotor structure for line start permanent magnet synchronous motor
CN105305669B (en) A kind of rotor electrical excitation vernier reluctance motor
RU2019100594A (en) The method of matching the rotor and armature magnetic circuits in two-dimensional electrical generator machines
CN110120732B (en) An induction series brushless excitation motor
Lu et al. Influences of rotor bar design on the starting performance of line-start permanent magnet synchronous motor
Hlioui et al. PM and hybrid excitation synchronous machines: Performances comparison
Shehata Design tradeoffs between starting and steady state performances of line-started interior permanent magnet synchronous motor
CN203896156U (en) Asynchronous starting three-phase permanent-magnet synchronous motor structure
CN103607082A (en) Method for assembling combined magnetic pole series field generator rotor for light vehicle
Zhou et al. Thermal analysis of a" V"-shape sandwiched flux switching permanent magnet machine for electric vehicles
CN103607080B (en) Tangential and biradial permanent magnetism composite excitation generator rotor production method
RU2496211C1 (en) Harmonising method of magnetic conductors of rotor and armature in two-dimensional electric machines - generators
Gu et al. A utility and accurate electrical loss model and application for induction motors utilizing 2-D finite element analysis
Norhisam et al. Double stator type permanent magnet generator
Washington et al. Application of the latest soft magnetic composites to a hybrid brushless DC motor for a compressor application
Sun et al. Research on optimal design of commutation performance of starter-generator used in aero-engine
CN206850546U (en) A kind of compact asynchronous starting permagnetic synchronous motor segmented rotor structure
Yaojing et al. A two-pole high-power line-start permanent magnet synchronous motor
Majumdar et al. Field simulation of linear induction machines illustrating the peak-to-peak ripple in propulsive force and its dependence on the length of the primary
Ning et al. Design and finite element analysis of a hybrid excitation synchronous machine
CN205141954U (en) U single -Phase permanent -Magnet synchronous motor unshakable in one's determination
Gwoździewicz et al. Comparison of properties of single-phase line start permanent magnet synchronous motors with W and VV shape permanent magnet arrangements. Experimental results