RU2018115009A - METHOD FOR PRODUCING CARBON MATERIAL MODIFIED BY CHLORINE AND CARBON MATERIAL MODIFIED BY CHLORINE, METHOD FOR PRODUCING COMPOSITE ELECTRIC CONDUCTING MATERIAL AND ELECTRIC CONDUCTING COMPOSITION - Google Patents

METHOD FOR PRODUCING CARBON MATERIAL MODIFIED BY CHLORINE AND CARBON MATERIAL MODIFIED BY CHLORINE, METHOD FOR PRODUCING COMPOSITE ELECTRIC CONDUCTING MATERIAL AND ELECTRIC CONDUCTING COMPOSITION Download PDF

Info

Publication number
RU2018115009A
RU2018115009A RU2018115009A RU2018115009A RU2018115009A RU 2018115009 A RU2018115009 A RU 2018115009A RU 2018115009 A RU2018115009 A RU 2018115009A RU 2018115009 A RU2018115009 A RU 2018115009A RU 2018115009 A RU2018115009 A RU 2018115009A
Authority
RU
Russia
Prior art keywords
carbon material
chlorine
modified
carbon
solution
Prior art date
Application number
RU2018115009A
Other languages
Russian (ru)
Other versions
RU2018115009A3 (en
RU2717516C2 (en
Inventor
Михаил Рудольфович Предтеченский
Олег Филиппович Бобренок
Александр Александрович Хасин
Артем Владимирович Алексеев
Original Assignee
МСД Текнолоджис С.а.р.л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by МСД Текнолоджис С.а.р.л. filed Critical МСД Текнолоджис С.а.р.л.
Priority to RU2018115009A priority Critical patent/RU2717516C2/en
Publication of RU2018115009A3 publication Critical patent/RU2018115009A3/ru
Publication of RU2018115009A publication Critical patent/RU2018115009A/en
Application granted granted Critical
Publication of RU2717516C2 publication Critical patent/RU2717516C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Claims (26)

1. Способ получения углеродного материала, содержащего одностенные углеродные нанотрубки и модифицированного хлором, отличающийся тем, что он включает в себя последовательно выполняемые операции:1. A method of producing a carbon material containing single-walled carbon nanotubes and modified with chlorine, characterized in that it includes sequentially performed operations: (а) углеродный материал (I), содержащий одностенные углеродные нанотрубки, приводят во взаимодействие с раствором хлорида железа с концентрацией не менее 0.1 М,(a) carbon material (I) containing single-walled carbon nanotubes is brought into interaction with a solution of iron chloride with a concentration of not less than 0.1 M, (б) отделяют от раствора хлорида железа влажный углеродный материал,(b) wet carbon material is separated from the iron chloride solution, (в) подвергают термообработке влажный углеродный материал, одновременно выпаривая раствор и высушивая углеродный материал до требуемой влажности.(c) subjected to heat treatment of the wet carbon material, while evaporating the solution and drying the carbon material to the desired moisture content. 2. Способ по п. 1, отличающийся тем, что углеродный материал (I) содержит от 0.5% до 50% масс. примесей оксида железа и что раствор хлорида железа готовят взаимодействием примесей оксида железа, содержащихся в углеродном материале (I), с раствором соляной кислоты с концентрацией не менее 0,1 М при температуре не ниже 40°С.2. The method according to p. 1, characterized in that the carbon material (I) contains from 0.5% to 50% of the mass. impurities of iron oxide and that a solution of iron chloride is prepared by the interaction of impurities of iron oxide contained in the carbon material (I) with a solution of hydrochloric acid with a concentration of at least 0.1 M at a temperature of at least 40 ° C. 3. Способ по п. 2, отличающийся тем, что углеродный материал (I) получают окислением углеродного материала (II), содержащего одностенные углеродные нанотрубки и содержащего от 0,3% до 40% масс. примесей фаз карбида железа и металлического железа, в токе газа, содержащего молекулярный кислород и пары воды, при температуре не ниже 300°С.3. The method according to p. 2, characterized in that the carbon material (I) is obtained by oxidation of a carbon material (II) containing single-walled carbon nanotubes and containing from 0.3% to 40% of the mass. impurities of the phases of iron carbide and metallic iron in a stream of gas containing molecular oxygen and water vapor, at a temperature not lower than 300 ° C. 4. Способ по п. 3, отличающийся тем, что углеродный материал (II), содержащий наночастицы карбида железа и металлического железа, готовят методом химического осаждения в газовой фазе из углеводорода или смеси углеводородов при участии наночастиц железосодержащего катализатора.4. The method according to p. 3, characterized in that the carbon material (II) containing nanoparticles of iron carbide and metallic iron is prepared by chemical vapor deposition from a hydrocarbon or a mixture of hydrocarbons with the participation of nanoparticles of an iron-containing catalyst. 5. Способ по пп. 1-4, отличающийся тем, что содержание углерода в углеродном материале (I) не менее 50%.5. The method according to PP. 1-4, characterized in that the carbon content in the carbon material (I) is not less than 50%. 6. Способ по пп. 1-5, отличающийся тем, что соотношение интегральных интенсивностей G-моды и D-моды спектра комбинационного рассеяния света с длиной волны 532 нм на углеродном материале (I) не менее 2.6. The method according to PP. 1-5, characterized in that the ratio of the integrated intensities of the G-mode and the D-mode of the Raman spectrum with a wavelength of 532 nm on a carbon material (I) is not less than 2. 7. Способ по пп. 1-5, отличающийся тем, что соотношение интегральных интенсивностей G-моды и D-моды спектра комбинационного рассеяния света с длиной волны 532 нм на углеродном материале (I) не менее 50.7. The method according to PP. 1-5, characterized in that the ratio of the integrated intensities of the G-mode and the D-mode of the Raman spectrum with a wavelength of 532 nm on a carbon material (I) is not less than 50. 8. Способ по пп. 1-7, отличающийся тем, что влажность отделенного от раствора влажного углеродного материала не более 90% масс.8. The method according to PP. 1-7, characterized in that the humidity separated from the solution of wet carbon material is not more than 90% of the mass. 9. Способ по п. 8, отличающийся тем, что после операции (б) отделения от раствора хлорида железа полученный влажный углеродный материал приводят во взаимодействие с раствором перекиси водорода с концентрацией не менее 0,1% масс. и повторно отделяют от раствора влажный углеродный материал с влажностью не более 90%, после чего проводят операцию (в).9. The method according to p. 8, characterized in that after operation (b) separation from the solution of iron chloride, the resulting wet carbon material is brought into interaction with a solution of hydrogen peroxide with a concentration of not less than 0.1% of the mass. and re-separated from the solution wet carbon material with a moisture content of not more than 90%, after which operation (c) is carried out. 10. Способ по пп. 8-9, отличающийся тем, что перед операцией (в) термообработки углеродный материал промывают в воде и повторно отделяют от раствора влажный углеродный материал с влажностью не более 90%.10. The method according to PP. 8-9, characterized in that before the operation (c) of the heat treatment, the carbon material is washed in water and re-separated from the solution wet carbon material with a moisture content of not more than 90%. 11. Углеродный материал, содержащий одностенные углеродные нанотрубки и модифицированный хлором, отличающийся тем, что он получен способом по пп. 1-1011. Carbon material containing single-walled carbon nanotubes and modified with chlorine, characterized in that it is obtained by the method according to paragraphs. 1-10 12. Углеродный материал, модифицированный хлором, по п. 11, отличающийся тем, что он содержит не менее 90% масс. углерода и не менее 3% масс. хлора.12. The carbon material modified with chlorine according to claim 11, characterized in that it contains at least 90% of the mass. carbon and not less than 3% of the mass. chlorine. 13. Углеродный материал, модифицированный хлором, по п. 12, отличающийся тем, что он содержит не менее 97% масс. углерода и не менее 0,1% масс. хлора.13. The carbon material modified with chlorine according to claim 12, characterized in that it contains at least 97% of the mass. carbon and not less than 0.1% of the mass. chlorine. 14. Углеродный материал, модифицированный хлором, по пп. 11-13, отличающийся тем, что соотношение интегральных интенсивностей G-моды и D-моды спектра комбинационного рассеяния света с длиной волны 532 нм на этом углеродном материале не менее 2.14. Carbon material modified with chlorine, PP. 11-13, characterized in that the ratio of the integrated intensities of the G mode and the D mode of the Raman spectrum with a wavelength of 532 nm on this carbon material is at least 2. 15. Углеродный материал, модифицированный хлором, по пп. 11-13, отличающийся тем, что соотношение интегральных интенсивностей G-моды и D-моды спектра комбинационного рассеяния света с длиной волны 532 нм на этом углеродном материале не менее 50.15. Carbon material modified with chlorine, PP. 11-13, characterized in that the ratio of the integrated intensities of the G mode and the D mode of the Raman spectrum with a wavelength of 532 nm on this carbon material is at least 50. 16. Способ получения композиционного полимерного материала, отличающийся тем, что он включает в себя стадию внесения углеродного материала, содержащего одностенные углеродные нанотрубки и модифицированного хлором, по пп. 11-15 в полимерный материал, в реакционную смесь, участвующую в реакции полимеризации или поликонденсации с образованием полимерного материала, или в один из компонентов этой реакционной смеси.16. A method of obtaining a composite polymer material, characterized in that it includes the step of introducing a carbon material containing single-walled carbon nanotubes and modified with chlorine, according to paragraphs. 11-15 into a polymeric material, into a reaction mixture participating in a polymerization or polycondensation reaction to form a polymeric material, or into one of the components of this reaction mixture. 17. Способ по п. 16, отличающийся тем, что углеродный материал, содержащий одностенные углеродные нанотрубки и модифицированный хлором, вносят в реакционную смесь в составе композиции с поверхностно-активным веществом.17. The method according to p. 16, characterized in that the carbon material containing single-walled carbon nanotubes and modified with chlorine is introduced into the reaction mixture as part of a composition with a surfactant. 18. Способ по п. 17, отличающийся тем, что композиция углеродного материала, содержащего одностенные углеродные нанотрубки и модифицированного хлором, с поверхностно-активным веществом содержит не менее 0,4% одностенных углеродных нанотрубок.18. The method according to p. 17, characterized in that the composition of the carbon material containing single-walled carbon nanotubes and modified with chlorine, with a surfactant contains at least 0.4% single-walled carbon nanotubes. 19. Способ по пп. 16-18, отличающийся тем, что реакцию полимеризации проводят под воздействием ультрафиолетового излучения.19. The method according to PP. 16-18, characterized in that the polymerization reaction is carried out under the influence of ultraviolet radiation. 20. Способ по пп. 16-18, отличающийся тем, что реакцию полимеризации проводят при температуре не ниже 60°С.20. The method according to PP. 16-18, characterized in that the polymerization reaction is carried out at a temperature not lower than 60 ° C. 21. Композиционный полимерный материал, отличающийся тем, что он приготовлен способом по пп. 16-20.21. Composite polymer material, characterized in that it is prepared by the method according to PP. 16-20. 22. Материал по п. 21, отличающийся тем, что он содержит не менее 0,001% масс. углеродного материала, содержащего одностенные углеродные нанотрубки и модифицированного хлором, по пп. 11-15.22. The material according to p. 21, characterized in that it contains at least 0.001% of the mass. carbon material containing single-walled carbon nanotubes and modified with chlorine, PP. 11-15. 23. Материал по п. 21-22, отличающийся тем, что его удельное электрическое сопротивление не выше 107 Ом⋅м.23. The material according to p. 21-22, characterized in that its specific electric resistance is not higher than 10 7 Ohm⋅m.
RU2018115009A 2018-04-23 2018-04-23 Method of producing carbon material modified with chlorine and carbon material modified with chlorine, method of producing composite electroconductive material and electroconductive composite material RU2717516C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018115009A RU2717516C2 (en) 2018-04-23 2018-04-23 Method of producing carbon material modified with chlorine and carbon material modified with chlorine, method of producing composite electroconductive material and electroconductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018115009A RU2717516C2 (en) 2018-04-23 2018-04-23 Method of producing carbon material modified with chlorine and carbon material modified with chlorine, method of producing composite electroconductive material and electroconductive composite material

Publications (3)

Publication Number Publication Date
RU2018115009A3 RU2018115009A3 (en) 2019-10-23
RU2018115009A true RU2018115009A (en) 2019-10-23
RU2717516C2 RU2717516C2 (en) 2020-03-23

Family

ID=68342191

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115009A RU2717516C2 (en) 2018-04-23 2018-04-23 Method of producing carbon material modified with chlorine and carbon material modified with chlorine, method of producing composite electroconductive material and electroconductive composite material

Country Status (1)

Country Link
RU (1) RU2717516C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198432A (en) * 2021-06-18 2021-08-03 江苏乾汇和环保再生有限公司 Preparation method of biomass activated carbon

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS65000B1 (en) * 2019-08-26 2024-01-31 Mcd Tech S A R L Chlorine-modified carbon material
RU2749904C1 (en) 2020-10-19 2021-06-18 МСД Текнолоджис С.а.р.л. Method for preparing anode paste for lithium-ion battery, anode paste, method for manufacture of anode (variants), anode (variants) and lithium-ion battery (variants)
WO2023128801A1 (en) 2021-12-29 2023-07-06 МСД Текнолоджис С.а р.л. Aqueous carbon nanotube dispersion, paste, cathode and anode
WO2023128802A1 (en) 2021-12-29 2023-07-06 МСД Текнолоджис С.а р.л. Carbon nanotube dispersion, cathode paste and cathode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE380384T1 (en) * 2003-04-24 2007-12-15 Carbon Nanotechnologies Inc CONDUCTIVE CARBON NANOTUBE POLYMER COMPOSITE
EP1638746B1 (en) * 2003-06-16 2013-05-08 William Marsh Rice University Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes
PL222515B1 (en) * 2011-08-02 2016-08-31 Inst Chemii Fizycznej Polskiej Akademii Nauk Method for preparing the chlorinated carbon nanotubes
RU2528985C2 (en) * 2012-07-03 2014-09-20 Общество с ограниченной ответственностью "НаноТехЦентр" Method of modifying carbon nanotubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198432A (en) * 2021-06-18 2021-08-03 江苏乾汇和环保再生有限公司 Preparation method of biomass activated carbon
CN113198432B (en) * 2021-06-18 2023-07-21 江苏乾汇和环保再生有限公司 Preparation method of biomass activated carbon

Also Published As

Publication number Publication date
RU2018115009A3 (en) 2019-10-23
RU2717516C2 (en) 2020-03-23

Similar Documents

Publication Publication Date Title
RU2018115009A (en) METHOD FOR PRODUCING CARBON MATERIAL MODIFIED BY CHLORINE AND CARBON MATERIAL MODIFIED BY CHLORINE, METHOD FOR PRODUCING COMPOSITE ELECTRIC CONDUCTING MATERIAL AND ELECTRIC CONDUCTING COMPOSITION
Przepiórski et al. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption
CA2921474C (en) Process for purifying semiconducting single-walled carbon nanotubes
Peng et al. Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture
Liu et al. A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols
Grad et al. Reduced graphene oxide modified with noble metal nanoparticles for formic acid dehydrogenation
Wang et al. Adsorption of acetaldehyde onto carbide-derived carbon modified by oxidation
Maldonado et al. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents
JP2012520223A (en) Steam-assisted ozonolysis of carbon nanotubes
Seredych et al. Effect of the graphene phase presence in nanoporous S-doped carbon on photoactivity in UV and visible light
Hou et al. Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation
Esteban-Arranz et al. Effect of surface, structural and textural properties of graphenic materials over cooperative and synergetic adsorptions of two chloroaromatic compounds from aqueous solution
Hu et al. N8 stabilized single-atom Pd for highly selective hydrogenation of acetylene
Molina-Sabio et al. Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: Effect on ammonia adsorption
Rashidi et al. Allylamide-grafted multiwall carbon nanotubes as a new type of nanoadsorbent for the H2S removal from gas stream
Martínez et al. Regioselectivity of the Pauson–Khand reaction in single-walled carbon nanotubes
JP7092671B2 (en) Methods for vapor phase surface treatment
Nie et al. PEGylation of double-walled carbon nanotubes for increasing their solubility in water
Bodnaryk et al. UV‐light mediated decomposition of a polyester for enrichment and release of semiconducting carbon nanotubes
Li et al. PEO-based mixed matrix membranes containing N-doped microporous carbon microparticles for enhanced CO2/N2 separation
Ferretti et al. One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: an experimental and theoretical investigation of the Diels–Alder [4+ 2] cycloaddition reaction
Arenillas et al. Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale
Rungrodnimitchai et al. The functionalization of activated carbon by oxidation
US11014818B2 (en) Process for producing graphene oxide products and uses thereof
Suslova et al. Activation of the Surface of Carbon and Nitrogen-Doped Carbon Nanotubes by Calcium Nitrate: Catalytic Properties of Cobalt Supported Catalysts of the Fischer–Tropsch Process Based on Them