RU2017124314A - QUANTUM METHOD FOR MEASURING TENSION, DIRECTION, GRADIENT OF EARTH'S MAGNETIC FIELD AND IMPLEMENTING ITS DEVICE - Google Patents

QUANTUM METHOD FOR MEASURING TENSION, DIRECTION, GRADIENT OF EARTH'S MAGNETIC FIELD AND IMPLEMENTING ITS DEVICE Download PDF

Info

Publication number
RU2017124314A
RU2017124314A RU2017124314A RU2017124314A RU2017124314A RU 2017124314 A RU2017124314 A RU 2017124314A RU 2017124314 A RU2017124314 A RU 2017124314A RU 2017124314 A RU2017124314 A RU 2017124314A RU 2017124314 A RU2017124314 A RU 2017124314A
Authority
RU
Russia
Prior art keywords
earth
magnetic
magnetic field
gradient
measuring
Prior art date
Application number
RU2017124314A
Other languages
Russian (ru)
Other versions
RU2680629C2 (en
RU2017124314A3 (en
Inventor
Алексей Николаевич Армизонов
Павел Алексеевич Армизонов
Николай Егорович Армизонов
Original Assignee
Алексей Николаевич Армизонов
Павел Алексеевич Армизонов
Николай Егорович Армизонов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Николаевич Армизонов, Павел Алексеевич Армизонов, Николай Егорович Армизонов filed Critical Алексей Николаевич Армизонов
Priority to RU2017124314A priority Critical patent/RU2680629C2/en
Publication of RU2017124314A publication Critical patent/RU2017124314A/en
Publication of RU2017124314A3 publication Critical patent/RU2017124314A3/ru
Application granted granted Critical
Publication of RU2680629C2 publication Critical patent/RU2680629C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measuring Magnetic Variables (AREA)

Claims (2)

1. Способ измерения напряженности, направления, градиента магнитного поля Земли, заключающийся в том, что производят оптическую накачку рабочего вещества магнитометра, отличающийся тем, что производят магнитную накачку рабочего вещества трех магнитометров в форме кольца, на поверхностях которых размещены измерительные обмотки, магнитоэлектрическим полем Земли, ориентируя микроскопические магнитные моменты вещества вдоль силовых магнитных линий магнитного поля Земли и увеличивая намагниченность рабочего вещества, в результате которой в соответствии с законом магнитоэлектрической индукции Фарадея в измерительных обмотках индуцируются электродвижущие силы (ЭДС) источников напряжения, затем измеряют значения ЭДС.1. A method of measuring the intensity, direction, gradient of the Earth’s magnetic field, which means that the working substance of the magnetometer is optically pumped, characterized in that the working substance is magnetically pumped by three magnetometers in the form of a ring, on whose surfaces measuring windings are placed, by the Earth’s magnetoelectric field , orienting the microscopic magnetic moments of the substance along the magnetic lines of force of the Earth’s magnetic field and increasing the magnetization of the working substance, as a result of which In accordance with the Faraday magnetoelectric induction law, electromotive forces (EMF) of voltage sources are induced in the measuring windings, then the EMF values are measured. 2. Устройство измерения напряженности, направления, градиента магнитного поля Земли, содержащее генератор возбуждения спектральной лампы, контур возбуждения, спектральную лампу, линзу Френеля, поляризатор, четвертьволновую пластину, ампулу с рабочим веществом, катушку обратной связи, усилитель, фазовращатель, отличающееся тем, что оно включает предельно-компактные, сверхширокополосные с магнитной накачкой рабочего вещества три идентичные, квантовые, магнитные, рамочные антенны.2. A device for measuring the intensity, direction, gradient of the Earth’s magnetic field, containing a spectral lamp excitation generator, an excitation circuit, a spectral lamp, a Fresnel lens, a polarizer, a quarter-wave plate, an ampoule with a working substance, a feedback coil, an amplifier, a phase shifter, characterized in that it includes extremely compact, ultra-wideband with magnetic pumping of the working medium three identical, quantum, magnetic, loop antennas.
RU2017124314A 2017-07-07 2017-07-07 Quantum way of measuring the intensity, direction, gradient magnetic fields of the earth and sells its device RU2680629C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017124314A RU2680629C2 (en) 2017-07-07 2017-07-07 Quantum way of measuring the intensity, direction, gradient magnetic fields of the earth and sells its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017124314A RU2680629C2 (en) 2017-07-07 2017-07-07 Quantum way of measuring the intensity, direction, gradient magnetic fields of the earth and sells its device

Publications (3)

Publication Number Publication Date
RU2017124314A true RU2017124314A (en) 2019-01-09
RU2017124314A3 RU2017124314A3 (en) 2019-01-09
RU2680629C2 RU2680629C2 (en) 2019-02-26

Family

ID=64977449

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017124314A RU2680629C2 (en) 2017-07-07 2017-07-07 Quantum way of measuring the intensity, direction, gradient magnetic fields of the earth and sells its device

Country Status (1)

Country Link
RU (1) RU2680629C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826069B (en) * 2023-02-14 2023-05-02 中国有色金属工业昆明勘察设计研究院有限公司 Unmanned aerial vehicle aviation magnetic measurement device and method based on proton magnetometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1157487A1 (en) * 1983-05-19 1985-05-23 Курский Политехнический Институт Method of measuring variable magnetic field
US4546317A (en) * 1983-07-01 1985-10-08 The United States Of America As Represented By The Secretary Of The Navy Free nuclear precession gradiometer system
RU2598312C2 (en) * 2014-04-29 2016-09-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Method of wireless transmission and reception of information

Also Published As

Publication number Publication date
RU2680629C2 (en) 2019-02-26
RU2017124314A3 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
BR112019009843A8 (en) PORTABLE IMAGE FORMATION METHODS AND DEVICES WITH LOW-FIELD MAGNETIC RESONANCE
GB2453479A (en) Nuclear magnetic resonance tool using switchable source of static magnetic field
DE602005012265D1 (en) MAGNETIC RESONANCE IMAGING SYSTEM WITH IRON SUPPORTED MAGNETIC FIELD GRADIENT SYSTEM
EP2816367A3 (en) Single-beam radio frequency atomic magnetometer
CN112782624A (en) Device and method for measuring coercivity of soft magnetic material
Sakamoto et al. Development of high-homogeneity magnetic field coil for 129 Xe EDM experiment
US9829545B2 (en) Apparatus and method for hypersensitivity detection of magnetic field
RU2017124314A (en) QUANTUM METHOD FOR MEASURING TENSION, DIRECTION, GRADIENT OF EARTH'S MAGNETIC FIELD AND IMPLEMENTING ITS DEVICE
Butta et al. Method for offset suppression in orthogonal fluxgate with annealed wire core
Singh et al. Optical spin initialization of spin-3 2 silicon vacancy centers in 6 H-SiC at room temperature
Lee et al. In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer
Chandrana et al. Automatic alignment of multiple magnets into Halbach cylinders
CN104090249B (en) A kind of magnetic-field measurement structure and measuring method
CN109507474A (en) Superhigh precision high-low pressure current sampling technique is realized with numerical control fluxgate
Piquerel et al. Phase dependence of microwave-assisted switching of a single magnetic nanoparticle
RU2451351C2 (en) Method to magnetise ferromagnetic toroid
Sato-Akaba et al. Development of the earth’s field NMR spectrometer for liquid screening
RU2657339C1 (en) Magnetometric device with a ferromagnetic modulator
KR20160104952A (en) A Device for Measuring Permeability
Martin et al. Improved NMR magnetometer for weak fields
Weiss et al. Excess magnetic noise in orthogonal fluxgates employing discontinuous excitation
Butta et al. Two-domain model for orthogonal fluxgate
Genkin et al. Impact of domain structure restructuring on the photomagnetization of a garnet film illuminated with circularly polarized light
Helms A simple approach to control rms (B1) by pulse length in variable flip angle (VFA) T1 mapping of human brain
Yang et al. Research on Automatic Demagnetization for Cylindrical Magnetic Shielding