RU2017119738A - OBTAINING A TRANSGENIC CANOLA WITH A LOW LEVEL OR WITH NO ABSENCE OF SATURATED FATTY ACIDS - Google Patents

OBTAINING A TRANSGENIC CANOLA WITH A LOW LEVEL OR WITH NO ABSENCE OF SATURATED FATTY ACIDS Download PDF

Info

Publication number
RU2017119738A
RU2017119738A RU2017119738A RU2017119738A RU2017119738A RU 2017119738 A RU2017119738 A RU 2017119738A RU 2017119738 A RU2017119738 A RU 2017119738A RU 2017119738 A RU2017119738 A RU 2017119738A RU 2017119738 A RU2017119738 A RU 2017119738A
Authority
RU
Russia
Prior art keywords
plant
seq
cell
desaturase
nucleic acid
Prior art date
Application number
RU2017119738A
Other languages
Russian (ru)
Other versions
RU2017119738A3 (en
Inventor
Даниель Ж. ГАШОТТ
П. Энн Оуэнс МЕРЛО
Марк А. Томпсон
Теренс А. Уолш
Бет Рубин УИЛСОН
Мэри УЕЛТЕР
Original Assignee
ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи filed Critical ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Publication of RU2017119738A publication Critical patent/RU2017119738A/en
Publication of RU2017119738A3 publication Critical patent/RU2017119738A3/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Edible Oils And Fats (AREA)

Claims (34)

1. Выделенная молекула нуклеиновой кислоты, кодирующая фермент дельта-9-десатуразу, содержащая аминокислотную последовательность, являющуюся по меньшей мере на 80% идентичную SEQ ID NO: 2.1. The selected nucleic acid molecule encoding the enzyme delta-9 desaturase, containing an amino acid sequence that is at least 80% identical to SEQ ID NO: 2. 2. Молекула нуклеиновой кислоты по п.1, дополнительно содержащая по меньшей мере один регуляторный элемент для гена.2. The nucleic acid molecule according to claim 1, additionally containing at least one regulatory element for the gene. 3. Молекула нуклеиновой кислоты по п.2, где регуляторный элемент для гена выбран из группы, состоящей из промотора дельта-9-десатуразы Saccharomyces cerevisiae, 3'UTR/терминатора дельта-9-десатуразы, промотора гена ole1, промотора фазеолина Phaseolus vulgaris, 5'-нетранслируемой области фазеолина Phaseolus vulgaris, 3'-нетранслируемой области фазеолина Phaseolus vulgaris, участка прикрепления к матриксу фазеолина Phaseolus vulgaris, промотора KCS3 Lesquerella fendleri, промотора маннопинсинтазы Agrobacterium tumefaciens, 3'-нетранслируемой области ORF23 Agrobacterium tumefaciens, промотора вируса мозаики прожилок маниоки, 3'-нетранслируемой области ORF1Agrobacterium tumefaciens, участка прикрепления к матриксу RB7 Nicotiana tabacum, усиливающей последовательности, пограничных последовательностей T-цепи, промотора LfKCS3, промотора FAE 1, Myc-метки и гемагглютининовой метки.3. The nucleic acid molecule according to claim 2, where the regulatory element for the gene is selected from the group consisting of the Saccharomyces cerevisiae delta 9 desaturase promoter, 3'UTR / delta 9 desaturase terminator , ole1 gene promoter, Phaseolus vulgaris phaseolin promoter, 5'-untranslated region of phaseolin Phaseolus vulgaris, 3'-untranslated region of phaseolin Phaseolus vulgaris, the attachment portion to the matrix phaseolin Phaseolus vulgaris, promoter KCS3 Lesquerella fendleri, mannopine synthase promoter Agrobacterium tumefaciens, 3'-untranslated region of ORF23 Agrobacterium tumefaciens, promoter cassava mosaic virus veining , 3'- etransliruemoy region ORF1 Agrobacterium tumefaciens, the attachment portion to the matrix RB7 Nicotiana tabacum, amplifying sequences border sequences of T-chain promoter LfKCS3, FAE 1 promoter, Myc-tag and hemagglutinin tag. 4. Конструкция, содержащая первую молекулу нуклеиновой кислоты по п.3 и вторую молекулу нуклеиновой кислоты по п.3, где первая молекула нуклеиновой кислоты дополнительно содержит первый регуляторный элемент для гена и вторая молекула нуклеиновой кислоты содержит второй регуляторный элемент для гена.4. A construct comprising a first nucleic acid molecule according to claim 3 and a second nucleic acid molecule according to claim 3, wherein the first nucleic acid molecule further comprises a first regulatory element for the gene and the second nucleic acid molecule contains a second regulatory element for the gene. 5. Конструкция по п.4, где первая или вторая молекула нуклеиновой кислоты содержит по меньшей мере два регуляторных элемента для гена.5. The design according to claim 4, where the first or second nucleic acid molecule contains at least two regulatory elements for the gene. 6. Способ уменьшения количества насыщенных жирных кислот в клетке, причем способ включает:6. A method of reducing the amount of saturated fatty acids in a cell, the method comprising: трансформацию клетки молекулой нуклеиновой кислоты по п.1, так чтобы происходило уменьшение количества насыщенных жирных кислот в клетке.the transformation of the cell by the nucleic acid molecule according to claim 1, so that there is a decrease in the number of saturated fatty acids in the cell. 7. Способ уменьшения количества насыщенных жирных кислот в клетке, причем способ включает:7. A method of reducing the amount of saturated fatty acids in a cell, the method comprising: трансформацию клетки конструкцией по п.5, так чтобы происходило уменьшение количества насыщенных жирных кислот в клетке.transforming the cell with the construct according to claim 5, so that a decrease in the amount of saturated fatty acids in the cell occurs. 8. Способ по п.7, где клетка представляет собой дрожжевую клетку.8. The method according to claim 7, where the cell is a yeast cell. 9. Способ по п.7 или 8, где клетка представляет собой клетку растений.9. The method according to claim 7 or 8, where the cell is a plant cell. 10. Способ по п.9, включающий трансформацию клетки растения более чем одной молекулой нуклеиновой кислоты по п.1.10. The method according to claim 9, comprising transforming a plant cell with more than one nucleic acid molecule according to claim 1. 11. Способ по п.9, где трансформация клетки растения вводит в клетку растения средство для снижения уровней 16:0-CoA в клетке растения.11. The method according to claim 9, where the transformation of the plant cell introduces an agent into the plant cell to lower 16: 0-CoA levels in the plant cell. 12. Способ по п.11, где средство для снижения уровней 16:0-CoA в клетке растения представляет собой внепластидную десатуразу.12. The method according to claim 11, where the means to reduce levels of 16: 0-CoA in the plant cell is an off-plastid desaturase. 13. Способ по п.12, где внепластидная десатураза представляет собой десатуразу, выбранную из группы, состоящей из десатуразы LnD9DS, десатуразы AnD9DS, десатуразы HzD9DS и десатуразы MgD9DS.13. The method of claim 12, wherein the off-plastid desaturase is a desaturase selected from the group consisting of LnD9DS desaturase, AnD9DS desaturase, HzD9DS desaturase, and MgD9DS desaturase. 14. Способ по п.12, где внепластидная десатураза представляет собой десатуразу AnD9DS.14. The method of claim 12, wherein the off-plastid desaturase is AnD9DS desaturase. 15. Способ по п.9, где клетку растения получают из растения, выбранного из рода, выбранного из группы, состоящей из Arabidopsis, Borago, Canola, Ricinus, Theobroma, Zea, Gossypium, Crambe, Cuphea, Linum, Lesquerella, Limnanthes, Linola, Tropaeolum, Oenothera, Olea, Elaeis, Arachis, рапса, Carthamus, Glycine, Soja, Helianthus, Nicotiana, Vernonia, Triticum, Hordeum, Oryza, Avena, Sorghum, Secale и других представителей Gramineae.15. The method according to claim 9, where the plant cell is obtained from a plant selected from a genus selected from the group consisting of Arabidopsis , Borago, Canola, Ricinus , Theobroma, Zea, Gossypium , Crambe , Cuphea , Linum , Lesquerella , Limnanthes , Linola , Tropaeolum , Oenothera , Olea , Elaeis , Arachis , canola, Carthamus , Glycine , Soja , Helianthus , Nicotiana , Vernonia , Triticum , Hordeum , Oryza , Avena , Sorghum , Secale and other representatives of Gramineae . 16. Масличное растение, содержащее последовательность нуклеиновой кислоты по п.1.16. An oil plant containing a nucleic acid sequence according to claim 1. 17. Масличное растение, содержащее конструкцию по п.5 или 6.17. Oilseed plant containing the construction according to claim 5 or 6. 18. Семя растения, которое экспрессирует внепластидную десатуразу, выбранную из группы, состоящей из SEQ ID NO: 2, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 или SEQ ID NO: 28.18. The seed of a plant that expresses an off-plastid desaturase selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 or SEQ ID NO: 28. 19. Семя трансгенной линии Brassica napus, причем семя имеет сниженные уровни насыщенных жирных ксилот относительно изогенной версии трансгенной линии Brassica napus.19. Seed of the transgenic line of Brassica napus , the seed having reduced levels of saturated fatty xylot relative to the isogenic version of the transgenic line of Brassica napus . 20. Способ получения модифицированного способами генной инженерии растения, содержащего сниженные количества насыщенных жирных кислот в растении по сравнению с растением дикого типа, причем способ включает:20. A method for producing a plant modified by genetic engineering methods containing reduced amounts of saturated fatty acids in a plant compared to a wild-type plant, the method comprising: трансформацию растительного материала молекулой нуклеиновой кислоты по п.1; иthe transformation of plant material by a nucleic acid molecule according to claim 1; and культивирование трансформированного растения с получением растения.culturing a transformed plant to obtain a plant. 21. Способ получения модифицированного способами генной инженерии растения, содержащего сниженные количества насыщенных жирных кислот в растении по сравнению с растением дикого типа, причем способ включает:21. A method for producing a plant modified by genetic engineering methods containing reduced amounts of saturated fatty acids in a plant compared to a wild-type plant, the method comprising: трансформацию растительного материала конструкцией по п.4; иtransformation of plant material by the construction according to claim 4; and культивирование трансформированного материала с получением растения.culturing the transformed material to obtain a plant. 22. Способ по п.21, где растение выбрано из рода, выбранного из группы, состоящей из Arabidopsis, Borago, Canola, Ricinus, Theobroma, Zea, Gossypium, Crambe, Cuphea, Linum, Lesquerella, Limnanthes, Linola, Tropaeolum, Oenothera, Olea, Elaeis, Arachis, рапса, Carthamus, Glycine, Soja, Helianthus, Nicotiana, Vernonia, Triticum, Hordeum, Oryza, Avena, Sorghum, Secale и других представителей Gramineae.22. The method according to item 21, where the plant is selected from a genus selected from the group consisting of Arabidopsis , Borago, Canola, Ricinus , Theobroma, Zea, Gossypium , Crambe , Cuphea , Linum , Lesquerella , Limnanthes , Linola, Tropaeolum , Oenothera , Olea , Elaeis , Arachis , rapeseed, Carthamus , Glycine , Soja , Helianthus , Nicotiana , Vernonia , Triticum , Hordeum , Oryza , Avena , Sorghum , Secale and other representatives of Gramineae . 23. Растение, полученное способом по п.21.23. The plant obtained by the method according to item 21. 24. Растительный материал, полученный из растения по п.23.24. The plant material obtained from the plant according to item 23. 25. Растительный материал по п.23, где растительный материал представляет собой семя.25. The plant material according to item 23, where the plant material is a seed. 26. Масло из растения по п.23.26. The oil from the plant according to item 23. 27. Масло из растения по п.23, где масло содержит менее 3,5% насыщенных жирных кислот.27. The plant oil of claim 23, wherein the oil contains less than 3.5% saturated fatty acids. 28. Масло растения по п.23, где масло содержит менее 3,0% насыщенных жирных кислот.28. The plant oil of claim 23, wherein the oil contains less than 3.0% saturated fatty acids.
RU2017119738A 2014-12-19 2014-12-19 OBTAINING A TRANSGENIC CANOLA WITH A LOW LEVEL OR WITH NO ABSENCE OF SATURATED FATTY ACIDS RU2017119738A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/071705 WO2016099568A1 (en) 2014-12-19 2014-12-19 Generation of transgenic canola with low or no saturated fatty acids

Publications (2)

Publication Number Publication Date
RU2017119738A true RU2017119738A (en) 2019-01-21
RU2017119738A3 RU2017119738A3 (en) 2019-01-21

Family

ID=56127197

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017119738A RU2017119738A (en) 2014-12-19 2014-12-19 OBTAINING A TRANSGENIC CANOLA WITH A LOW LEVEL OR WITH NO ABSENCE OF SATURATED FATTY ACIDS

Country Status (11)

Country Link
EP (1) EP3232770A4 (en)
JP (1) JP2017537633A (en)
KR (1) KR20170098810A (en)
CN (1) CN106998666A (en)
AU (1) AU2014413993A1 (en)
BR (1) BR112017011810A2 (en)
CA (1) CA2969617A1 (en)
IL (1) IL252674A0 (en)
MX (1) MX2017007320A (en)
RU (1) RU2017119738A (en)
WO (1) WO2016099568A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018010108A2 (en) 2015-11-18 2018-11-21 Provivi Inc microorganisms for the production of insect pheromones and related compounds
EP3464311A4 (en) 2016-06-06 2020-03-18 Provivi, Inc. Semi-biosynthetic production of fatty alcohols and fatty aldehydes
BR112019024258A2 (en) 2017-05-17 2020-08-18 Provivi, Inc. YARROWIA LIPOLYTICA RECOMBINANT MICROORGANISMS AND METHOD TO PRODUCE A C6-C24 MONO- OR POLYINSATURATED FAT ALCOHOL FROM AN ENDOGENOUS OR EXOGENOUS SOURCE OF C6-C24 SATURATED ACIDOGRAX
CN111560394A (en) * 2019-12-30 2020-08-21 海南大学 Method for rapidly identifying transgenic arabidopsis by using seed fluorescence
KR102566555B1 (en) * 2020-05-20 2023-08-14 한국화학연구원 Nucleotide encoding delta-9-desaturase and use thereof
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins
EP4222167A1 (en) 2020-09-30 2023-08-09 Nobell Foods, Inc. Recombinant milk proteins and food compositions comprising the same
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0561569T3 (en) * 1992-03-13 2003-10-06 Agrigenetics Inc Modification of vegetable oils using desaturase
AU3367899A (en) * 1998-03-30 1999-10-18 Dow Agrosciences Llc Modification of fatty acid composition in plants by expression of an (aspergillus nidulans) delta-9 coa desaturase
MXPA04009134A (en) * 2002-03-21 2005-01-25 Monsanto Technology Llc Nucleic acid constructs and methods for producing altered seed oil compositions.
CA2450000A1 (en) * 2003-12-18 2005-06-18 Alberta Research Council Inc. Method of creating plants with reduced level of saturated fatty acid in seed oil
US20080260933A1 (en) * 2004-10-08 2008-10-23 Dow Agroscience Llc Certain Plants with "No Saturate" or Reduced Saturate Levels of Fatty Acids in Seeds, and Oil Derived from the Seeds
CA2583380C (en) * 2004-10-08 2016-08-02 Dow Agrosciences Llc Certain plants with no saturate or reduced saturate levels of fatty acids in seeds, and oil derived from the seeds
AU2011270652B2 (en) * 2010-06-24 2015-10-01 Corteva Agriscience Llc Lowering saturated fatty acid content of plant seeds
AR081302A1 (en) * 2010-06-24 2012-08-01 Brookhaven Science Ass Llc ACCUMULATION OF OMEGA-7 FATTY ACIDS (-7) IN PLANT SEEDS
IN2014DN06986A (en) * 2012-02-29 2015-04-10 Dow Agrosciences Llc

Also Published As

Publication number Publication date
CA2969617A1 (en) 2016-06-23
JP2017537633A (en) 2017-12-21
KR20170098810A (en) 2017-08-30
EP3232770A1 (en) 2017-10-25
WO2016099568A1 (en) 2016-06-23
IL252674A0 (en) 2017-08-31
AU2014413993A1 (en) 2017-06-01
CN106998666A (en) 2017-08-01
MX2017007320A (en) 2017-08-25
EP3232770A4 (en) 2018-06-06
RU2017119738A3 (en) 2019-01-21
BR112017011810A2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
RU2017119738A (en) OBTAINING A TRANSGENIC CANOLA WITH A LOW LEVEL OR WITH NO ABSENCE OF SATURATED FATTY ACIDS
AU2018204726B2 (en) Production of dihydrosterculic acid and derivatives thereof
RU2636344C2 (en) Methods for lipids obtaining
AU2003232512B2 (en) Method for producing multiple unsaturated fatty acids in plants
WO2007106903A3 (en) Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems
Maravi et al. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha
Kajikawa et al. Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes
Petrie et al. Transgenic production of arachidonic acid in oilseeds
Beacham et al. Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina
Gao et al. Ectopic overexpression of a type-II DGAT (CeDGAT2-2) derived from oil-rich tuber of Cyperus esculentus enhances accumulation of oil and oleic acid in tobacco leaves
US9976155B2 (en) Accumulation of omega-7 fatty acids in plant seeds
Vuttipongchaikij Genetic manipulation of microalgae for improvement of biodiesel production
Chen et al. FAD2-DGAT2 genes coexpressed in endophytic Aspergillus fumigatus derived from tung oilseeds
Han et al. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae
AU2013204308A1 (en) Methods of producing lipids
Chien Molecular Characterisation And Assessment Of Fatty Acid Biosynthesis Pathway In Transgenic Chlorella Vulgaris Transformed With Disrupted Omega-3 Desaturase Gene Vector Cassette
Naim Enhanced metabolic engineering of lipid biosynthesis in leaves and seeds with the use of viral silencing-suppressor proteins
US20140289908A1 (en) Gene combinations for producing punicic acid in transgenic plants
Kim et al. Comparative analysis of two seed-specific promoters, FAE1 and Napin for increasing seed oil content in Arabidopsis thaliana
Li LanYu et al. Research on marker-free transformation of Brassica napus with Fad2 antisense gene and RNA interference.
CA2810336A1 (en) Gene combinations for producing punicic acid in transgenic plants

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20190319