RU2016110445A - The method of microstructuring the surface of transparent materials - Google Patents

The method of microstructuring the surface of transparent materials

Info

Publication number
RU2016110445A
RU2016110445A RU2016110445A RU2016110445A RU2016110445A RU 2016110445 A RU2016110445 A RU 2016110445A RU 2016110445 A RU2016110445 A RU 2016110445A RU 2016110445 A RU2016110445 A RU 2016110445A RU 2016110445 A RU2016110445 A RU 2016110445A
Authority
RU
Russia
Prior art keywords
microstructuring
laser radiation
transparent materials
pulsed laser
transparent
Prior art date
Application number
RU2016110445A
Other languages
Russian (ru)
Other versions
RU2635494C2 (en
Inventor
Михаил Юрьевич Цветков
Владимир Исаакович Юсупов
Виктор Николаевич Баграташвили
Original Assignee
Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" filed Critical Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority to RU2016110445A priority Critical patent/RU2635494C2/en
Publication of RU2016110445A publication Critical patent/RU2016110445A/en
Application granted granted Critical
Publication of RU2635494C2 publication Critical patent/RU2635494C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass

Landscapes

  • Laser Beam Processing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (3)

1. Способ микроструктурирования поверхности прозрачных материалов, при котором сфокусированное импульсное лазерное излучение воздействует на обратную поверхность образца из прозрачного материала, отличающийся тем, что эта поверхность находится в контакте с поглощающей лазерное излучение жидкостью, в качестве которой используются прекурсоры благородных металлов, используется импульсное лазерное излучение видимой области спектра с длительностью импульсов 1-50 нс при плотности энергии 5-500 Дж/см2, а формирование необходимой конфигурации отверстий и каналов на поверхности и в объеме образца из прозрачного материала происходит при его перемещении в пространстве по заданной траектории.1. A method of microstructuring the surface of transparent materials, in which a focused pulsed laser radiation acts on the back surface of a sample of a transparent material, characterized in that this surface is in contact with a liquid absorbing laser radiation, using precursors of precious metals, using pulsed laser radiation the visible spectrum of a pulse width of 1-50 nsec at an energy density of 5-500 J / cm2, and the formation of desired configuration and holes and channels on the surface and in the bulk sample from the transparent material occurs when it is moved in space along a predetermined path. 2. Способ микроструктурирования поверхности прозрачных материалов по п. 1, отличающийся тем, что в качестве прекурсора благородного металла используется нитрат серебра.2. The method of microstructuring the surface of transparent materials according to claim 1, characterized in that silver nitrate is used as a precursor of the noble metal. 3. Способ микроструктурирования поверхности прозрачных материалов по п. 1, отличающийся тем, что длина волны импульсного лазерного излучения выбирается из области полосы плазмонного поглощения кластеров и наночастиц соответствующего металла.3. The method of microstructuring the surface of transparent materials according to claim 1, characterized in that the wavelength of the pulsed laser radiation is selected from the region of the plasmon absorption band of the clusters and nanoparticles of the corresponding metal.
RU2016110445A 2016-03-22 2016-03-22 Method for micropatterning surface of transparent materials RU2635494C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110445A RU2635494C2 (en) 2016-03-22 2016-03-22 Method for micropatterning surface of transparent materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110445A RU2635494C2 (en) 2016-03-22 2016-03-22 Method for micropatterning surface of transparent materials

Publications (2)

Publication Number Publication Date
RU2016110445A true RU2016110445A (en) 2017-09-27
RU2635494C2 RU2635494C2 (en) 2017-11-13

Family

ID=59930879

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110445A RU2635494C2 (en) 2016-03-22 2016-03-22 Method for micropatterning surface of transparent materials

Country Status (1)

Country Link
RU (1) RU2635494C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729253C1 (en) * 2019-08-07 2020-08-05 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" 3d microstructures formation method in optical materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1020385A1 (en) * 1981-11-06 1983-05-30 Всесоюзный научно-исследовательский институт технического и специального строительного стекла Device for cutting glass sheet
JPS63174795A (en) * 1987-01-13 1988-07-19 Yuugou Giken:Kk Laser beam fusing and processing machine
JP2003230978A (en) * 2002-02-13 2003-08-19 Matsushita Electric Ind Co Ltd Method for processing board
HU227254B1 (en) * 2006-05-26 2010-12-28 Univ Szegedi Method of indirect working transparent materials by pulsed laser
RU2382693C1 (en) * 2008-07-17 2010-02-27 Открытое акционерное общество Национальный институт авиационных технологий (ОАО НИАТ) Method of gas-laser cutting of composite materials
RU2413337C2 (en) * 2009-02-11 2011-02-27 Георгий Кондратьевич Шеметун Method for manufacturing of flat piezoceramic items and device for its realisation
JP2015050107A (en) * 2013-09-03 2015-03-16 富士フイルム株式会社 Method of producing conductive film

Also Published As

Publication number Publication date
RU2635494C2 (en) 2017-11-13

Similar Documents

Publication Publication Date Title
Scaramuzza et al. Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: Insights to improve size control and productivity
Hu et al. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate
Desarkar et al. One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique
Bashir et al. Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment
Sukhov et al. Generation of nanoparticles of bronze and brass by laser ablation in liquid
Davletshin et al. The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures
Svetlichnyi et al. Metal oxide nanoparticle preparation by pulsed laser ablation of metallic targets in liquid
JP2016514008A5 (en)
JP2016516516A5 (en)
RU2016110445A (en) The method of microstructuring the surface of transparent materials
LT2014504A (en) Method and apparatus for laser cutting of transparent media
Lednev et al. Laser ablation comparison by picosecond pulses train and nanosecond pulse
Monsa et al. A simple strategy for enhanced production of nanoparticles by laser ablation in liquids
JP2016513790A5 (en)
Miyamoto et al. Characterization of plasma in microwelding of glass using ultrashort laser pulse at high pulse repetition rates
Rahman et al. The role of sacrificial target material in micromachining of glass using laser-induced plasma-assisted ablation (LIPAA)
Latif et al. Laser shots impact on geometry of crater evolution at copper surface
Saghebfar et al. Femtosecond pulse laser irradiation of gold/chromium double-layer metal film: The role of interface boundary resistance in two-temperature model simulations
Bashir et al. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium
Nath et al. Laser-induced metastable phases in liquids
Benavides et al. Reflection of high-intensity nanosecond Nd: YAG laser pulses by metals
MX2018006695A (en) Method of laser cutting a web structure.
Wei et al. Burst-mode 500 ps fiber laser ablation in 304 stainless steel
Zhao et al. Improving the efficiency of picosecond laser micromachining of stainless steel
Pazokian Ultra-short KrF laser ablation of polyethersulfone films: investigation of a thick rim formation