RU2015141340A - Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования - Google Patents
Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования Download PDFInfo
- Publication number
- RU2015141340A RU2015141340A RU2015141340A RU2015141340A RU2015141340A RU 2015141340 A RU2015141340 A RU 2015141340A RU 2015141340 A RU2015141340 A RU 2015141340A RU 2015141340 A RU2015141340 A RU 2015141340A RU 2015141340 A RU2015141340 A RU 2015141340A
- Authority
- RU
- Russia
- Prior art keywords
- interest
- decision tree
- parameters
- forecasting model
- sheet
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Machine Translation (AREA)
Claims (92)
1. Способ определения параметра точности обученной модели прогнозирования в виде дерева принятия решений, способ выполняется в компьютерной системе машинного обучения; способ включает в себя:
доступ, с постоянного машиночитаемого носителя системы машинного обучения, к набору обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса;
создание процессором системы машинного обучения обученной модели прогнозирования в виде дерева принятия решений по меньшей мере частично на основе набора обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса, а обученная модель прогнозирования в виде дерева принятия решений включает в себя узлы, связанные с факторами, и листы, связанные с параметрами интереса обучающих объектов из набора обучающих объектов, и связь между листами и параметрами интереса была определена с помощью выполненного процессором системы машинного обучения сравнения по меньшей мере двух из факторов и признаков обучающих объектов из набора обучающих объектов;
отправку команды процессору системы машинного обучения на выполнение:
создания процессором подгруппы случайных параметров интереса;
связывания в постоянном машиночитаемом носителе подгруппы случайных параметров интереса с данным листом;
определение процессором параметра точности листа на основе (i) параметров интереса, связанных с данным листом и (ii) подгруппы случайных параметров интереса данного листа; и
определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений на основе определенного параметра точности листа.
2. Способ определения параметра точности обученной модели прогнозирования в виде дерева принятия решений, способ выполняется в компьютерной системе машинного обучения; способ включает в себя:
доступ, с постоянного машиночитаемого носителя, к обученной модели прогнозирования в виде дерева принятия решений, созданной по меньшей мере частично на основе набора обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса, а обученная модель прогнозирования в виде дерева принятия решений включает в себя узлы, связанные с факторами, и листы, связанные с параметрами интереса обучающих объектов из набора обучающих объектов, и связь между листами и параметрами интереса была определена с помощью сравнения по меньшей мере двух из факторов и признаков обучающих объектов из набора обучающих объектов;
создание процессором подгруппы случайных параметров интереса;
связывания в постоянном машиночитаемом носителе подгруппы случайных параметров интереса с данным листом;
определение процессором параметра точности листа на основе (i) параметров интереса, связанных с данным листом и (ii) подгруппы случайных параметров интереса данного листа; и
определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений на основе определенного параметра точности листа.
3. Способ по п. 2, в котором сравнение по меньшей мере двух факторов и признаков обучающих объектов включает в себя сравнение процессором условий, связанных по меньшей мере с двумя факторами и по меньшей мере двумя значениями, связанными с признаками соответствующего обучающего объекта.
4. Способ по п. 2, в котором создание процессором подгруппы случайных параметров интереса включает в себя создание случайных значений целевой функции, связанной с обученной моделью прогнозирования в виде дерева принятия решений.
5. Способ по п. 4, в котором и случайные значения выбираются таким образом, чтобы увеличить ошибку, связанную с наилучшим из факторов фактором, поддерживая при этом созданный ранее параметр точности обученной модели прогнозирования в виде дерева принятия решений ниже минимального порога.
6. Способ по п. 5, в котором наилучший из факторов фактор определен как фактор, оказывающий наиболее положительное влияние на созданный ранее параметр точности обученной модели прогнозирования в виде дерева принятия решений.
7. Способ по п. 4, в котором случайные значения выбираются на основе значений параметров интереса, связанных с данным листом.
8. Способ по п. 7, в котором случайные значения выбираются таким образом, что они будут включены в состав диапазона, включающего в себя минимальное значение, определенное как самое низкое значений параметра интереса, связанного с данным листом, и самое высокое значений, определенное как самое высокое значение параметра интереса, связанного с данным листом.
9. Способ по п. 2, в котором подгруппа случайных параметров интереса включает в себя число случайных параметров интереса, равное числу параметров интереса данного листа, с которым подгруппа случайных параметров интереса связана.
10. Способ по п. 2, в котором определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений, основанное на определенном параметре точности листа, включает в себя определение общей ошибки листов в соответствии с формулой:
где М - число листов, Nj является числом параметров интереса, связанных с j-тым листом.
11. Способ по п. 10, в котором число параметров интереса, связанное с j-тым листом, равно числу обучающих объектов, связанных с j-тым листом.
12. Способ по п. 2, в котором определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений основано на множестве определенных параметров точности листа, причем каждый из множества определенных параметров листа связан с отдельным листом.
13. Способ по п. 2, в котором признаки указывают по меньшей мере либо на число щелчков мышью, либо на число просмотров, либо на ранжирование документов, либо на URL, либо на доменное имя, либо на IP-адрес, либо на поисковой запрос, либо на ключевое слово.
14. Способ по п. 2, в котором параметр интереса указывает по меньшей мере либо на прогнозирование поискового результата, либо на вероятность щелчка мышью, либо на релевантность документа, либо на пользовательский интерес, либо на URL, либо на число щелчков мышью, либо на отношение количества щелчков мышью к количеству показов (CTR).
15. Способ по п. 2, в котором параметр точности модели прогнозирования в виде дерева принятия решений показывает точность целевой функции, связанную с моделью прогнозирования в виде дерева принятия решений.
16. Способ по п. 2, в котором каждый из факторов связан либо с (i) условием, применимым к бинарному признаку, либо с (ii) условием, применимым к численному признаку либо с (iii) условием, применимым к категориальному признаку.
17. Способ создания обученной модели прогнозирования в виде дерева принятия решений, способ выполняется в компьютерной системе машинного обучения; способ включает в себя:
осуществление доступа из постоянного машиночитаемого носителя к набору факторов;
идентификацию процессором из набора факторов фактора, связанного с наилучшим параметром точности предварительно обученной модели прогнозирования в виде дерева принятия решений, для данного положения узла, связанного с фактором в предварительно обученной модели прогнозирования в виде дерева принятия решений, причем наилучший параметр точности предварительно обученной модели прогнозирования в виде дерева принятия решений выбирается из множества параметров точности множества предварительных моделей прогнозирования в виде дерева принятия решений, причем множество параметров точности множества предварительных моделей прогнозирования в виде дерева принятия решений было создано в соответствии со способом по п. 2;
связь процессором фактора с данным положением узла создающейся обученной модели прогнозирования в виде дерева принятия решений; и
создание процессором обученной модели прогнозирования в виде дерева принятия решений, причем обученная модель прогнозирования в виде дерева принятия решений включает в себя узел, связанный с фактором, для данного положения.
18. Способ по п. 17, в котором каждый из множества параметров точности связан с соответствующей моделью из множества предварительных моделей прогнозирования в виде дерева принятия решений.
19. Способ по п. 17, в котором способ дополнительно включает в себя:
идентификацию процессором другого фактора из набора факторов, причем этот другой фактор связан с наилучшим параметром точности другой предварительно обученной модели прогнозирования в виде дерева принятия решений для другого данного положения другого узла, связанного с другим фактором в другой предварительно обученной модели прогнозирования в виде дерева принятия решений; и
и связывание процессором другого фактора с другим данным положением другого узла создающейся обученной модели прогнозирования в виде дерева принятия решений.
20. Способ по п. 17, в котором обученная модель прогнозирования в виде дерева принятия решений также включает в себя другой узел, связанный с другим фактором, для другого данного положения.
21. Способ определения параметра точности обученной модели прогнозирования в виде дерева принятия решений, способ выполняется в компьютерной системе машинного обучения; способ включает в себя:
доступ, с постоянного машиночитаемого носителя, к набору обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса;
создание процессором обученной модели прогнозирования в виде дерева принятия решений по меньшей мере частично на основе набора обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса, а обученная модель прогнозирования в виде дерева принятия решений включает в себя узлы, связанные с факторами, и листы, связанные с параметрами интереса обучающих объектов из набора обучающих объектов, и связь между листами и параметрами интереса была определена с помощью сравнения по меньшей мере двух из факторов и признаков обучающих объектов из набора обучающих объектов;
создания процессором подгруппы случайных параметров интереса;
связывания в постоянном машиночитаемом носителе подгруппы случайных параметров интереса с данным листом;
определение процессором параметра точности листа на основе (i) параметров интереса, связанных с данным листом и (ii) подгруппы случайных параметров интереса данного листа; и
определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений на основе определенного параметра точности листа.
22. Компьютерная система для определения параметра точности обученной модели прогнозирования в виде дерева принятия решений, система включает в себя:
постоянный машиночитаемый носитель;
процессор, выполненный с возможностью осуществлять:
доступ, с постоянного машиночитаемого носителя, к обученной модели прогнозирования в виде дерева принятия решений, созданной по меньшей мере частично на основе набора обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса, а обученная модель прогнозирования в виде дерева принятия решений включает в себя узлы, связанные с факторами, и листы, связанные с параметрами интереса обучающих объектов из набора обучающих объектов, и связь между листами и параметрами интереса была определена с помощью сравнения по меньшей мере двух из факторов и признаков обучающих объектов из набора обучающих объектов;
создания процессором подгруппы случайных параметров интереса;
связывания в постоянном машиночитаемом носителе подгруппы случайных параметров интереса с данным листом;
определение процессором параметра точности листа на основе (i) параметров интереса, связанных с данным листом и (ii) подгруппы случайных параметров интереса данного листа; и
определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений на основе определенного параметра точности листа.
23. Система по п. 22, в которой сравнение по меньшей мере двух факторов и признаков обучающих объектов включает в себя сравнение процессором условий, связанных по меньшей мере с двумя факторами и по меньшей мере двумя значениями, связанными с признаками соответствующего обучающего объекта.
24. Система по п. 22, в которой создание процессором подгруппы случайных параметров интереса включает в себя создание случайных значений целевой функции, связанной с обученной моделью прогнозирования в виде дерева принятия решений.
25. Система по п. 24, в которой и случайные значения выбираются таким образом, чтобы увеличить ошибку, связанную с наилучшим из факторов фактором, поддерживая при этом созданный ранее параметр точности обученной модели прогнозирования в виде дерева принятия решений ниже минимального порога.
26. Система по п. 25, в которой наилучший из факторов фактор определен как фактор, оказывающий наиболее положительное влияние на созданный ранее параметр точности обученной модели прогнозирования в виде дерева принятия решений.
27. Система по п. 24, в которой случайные значения выбираются на основе значений параметров интереса, связанных с данным листом.
28. Система по п. 27, в которой случайные значения выбираются таким образом, что они будут включены в состав диапазона, включающего в себя минимальное значение, определенное как самое низкое значений параметра интереса, связанного с данным листом, и самое высокое значений, определенное как самое высокое значение параметра интереса, связанного с данным листом.
29. Система по п. 22, в которой подгруппа случайных параметров интереса включает в себя число случайных параметров интереса, равное числу параметров интереса данного листа, с которым подгруппа случайных параметров интереса связана.
30. Система по п. 22, в которой определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений, основанное на определенном параметре точности листа, включает в себя определение общей ошибки листов в соответствии с формулой:
где М - число листов, Nj является числом параметров интереса, связанных с j-тым листом.
31. Система по п. 30, в которой число параметров интереса, связанное с j-тым листом, равно числу обучающих объектов, связанных с j-тым листом.
32. Система по п. 22, в которой определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений основано на множестве определенных параметров точности листа, причем каждый из множества определенных параметров листа связан с отдельным листом.
33. Система по п. 22, в которой признаки указывают по меньшей мере либо на число щелчков мышью, либо на число просмотров, либо на ранжирование документов, либо на URL, либо на доменное имя, либо на IP-адрес, либо на поисковой запрос, либо на ключевое слово.
34. Система по п. 22, в которой параметр интереса указывает по меньшей мере либо на прогнозирование поискового результата, либо на вероятность щелчка мышью, либо на релевантность документа, либо на пользовательский интерес, либо на URL, либо на число щелчков мышью, либо на отношение количества щелчков мышью к количеству показов (CTR).
35. Система по п. 22, в которой параметр точности модели прогнозирования в виде дерева принятия решений показывает точность целевой функции, связанную с моделью прогнозирования в виде дерева принятия решений.
36. Система по п. 22, в которой каждый из факторов связан либо с (i) условием, применимым к бинарному признаку, либо с (ii) условием, применимым к численному признаку, либо с (iii) условием, применимым к категориальному признаку.
37. Компьютерная система для создания обученной модели прогнозирования в виде дерева принятия решений, система включает в себя:
постоянный машиночитаемый носитель;
процессор, выполненный с возможностью осуществлять:
осуществление доступа из постоянного машиночитаемого носителя к набору факторов;
идентификацию процессором из набора факторов фактора, связанного с наилучшим параметром точности предварительно обученной модели прогнозирования в виде дерева принятия решений, для данного положения узла, связанного с фактором в предварительно обученной модели прогнозирования в виде дерева принятия решений, причем наилучший параметр точности предварительно обученной модели прогнозирования в виде дерева принятия решений выбирается из множества параметров точности множества предварительных моделей прогнозирования в виде дерева принятия решений, причем множество параметров точности множества предварительных моделей прогнозирования в виде дерева принятия решений было создано в соответствии со способом по п. 2;
связь процессором фактора с данным положением узла создающейся обученной модели прогнозирования в виде дерева принятия решений; и
создание процессором обученной модели прогнозирования в виде дерева принятия решений, причем обученная модель прогнозирования в виде дерева принятия решений включает в себя узел, связанный с фактором, для данного положения.
38. Система по п. 37, в которой каждый из множества параметров точности связан с соответствующей моделью из множества предварительных моделей прогнозирования в виде дерева принятия решений.
39. Система по п. 37, в которой процессор дополнительно выполнен с возможностью осуществлять:
идентификацию процессором другого фактора из набора факторов, причем этот другой фактор связан с наилучшим параметром точности другой предварительно обученной модели прогнозирования в виде дерева принятия решений для другого данного положения другого узла, связанного с другим фактором в другой предварительно обученной модели прогнозирования в виде дерева принятия решений; и
и связывание процессором другого фактора с другим данным положением другого узла создающейся обученной модели прогнозирования в виде дерева принятия решений.
40. Система по п. 37, в которой обученная модель прогнозирования в виде дерева принятия решений также включает в себя другой узел, связанный с другим фактором, для другого данного положения.
41. Компьютерная система для определения параметра точности обученной модели прогнозирования в виде дерева принятия решений, система включает в себя:
постоянный машиночитаемый носитель;
процессор, выполненный с возможностью осуществлять:
доступ, с постоянного машиночитаемого носителя, к набору обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса;
создание процессором обученной модели прогнозирования в виде дерева принятия решений по меньшей мере частично на основе набора обучающих объектов, причем каждый обучающий объект из набора обучающих объектов включает в себя признаки и параметр интереса, а обученная модель прогнозирования в виде дерева принятия решений включает в себя узлы, связанные с факторами, и листы, связанные с параметрами интереса обучающих объектов из набора обучающих объектов, и связь между листами и параметрами интереса была определена с помощью сравнения по меньшей мере двух из факторов и признаков обучающих объектов из набора обучающих объектов;
создания процессором подгруппы случайных параметров интереса;
связывания в постоянном машиночитаемом носителе подгруппы случайных параметров интереса с данным листом;
определение процессором параметра точности листа на основе (i) параметров интереса, связанных с данным листом и (ii) подгруппы случайных параметров интереса данного листа; и
определение процессором параметра точности обученной модели прогнозирования в виде дерева принятия решений на основе определенного параметра точности листа.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015141340A RU2632133C2 (ru) | 2015-09-29 | 2015-09-29 | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования |
US15/263,654 US10387801B2 (en) | 2015-09-29 | 2016-09-13 | Method of and system for generating a prediction model and determining an accuracy of a prediction model |
US16/536,348 US11341419B2 (en) | 2015-09-29 | 2019-08-09 | Method of and system for generating a prediction model and determining an accuracy of a prediction model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015141340A RU2632133C2 (ru) | 2015-09-29 | 2015-09-29 | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015141340A true RU2015141340A (ru) | 2017-04-06 |
RU2632133C2 RU2632133C2 (ru) | 2017-10-02 |
Family
ID=58409639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015141340A RU2632133C2 (ru) | 2015-09-29 | 2015-09-29 | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования |
Country Status (2)
Country | Link |
---|---|
US (2) | US10387801B2 (ru) |
RU (1) | RU2632133C2 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2694001C2 (ru) * | 2017-11-24 | 2019-07-08 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система создания параметра качества прогноза для прогностической модели, выполняемой в алгоритме машинного обучения |
US10387801B2 (en) | 2015-09-29 | 2019-08-20 | Yandex Europe Ag | Method of and system for generating a prediction model and determining an accuracy of a prediction model |
US11256991B2 (en) | 2017-11-24 | 2022-02-22 | Yandex Europe Ag | Method of and server for converting a categorical feature value into a numeric representation thereof |
US11995519B2 (en) | 2017-11-24 | 2024-05-28 | Direct Cursus Technology L.L.C | Method of and server for converting categorical feature value into a numeric representation thereof and for generating a split value for the categorical feature |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11775850B2 (en) | 2016-01-27 | 2023-10-03 | Microsoft Technology Licensing, Llc | Artificial intelligence engine having various algorithms to build different concepts contained within a same AI model |
US11841789B2 (en) | 2016-01-27 | 2023-12-12 | Microsoft Technology Licensing, Llc | Visual aids for debugging |
US11120299B2 (en) | 2016-01-27 | 2021-09-14 | Microsoft Technology Licensing, Llc | Installation and operation of different processes of an AI engine adapted to different configurations of hardware located on-premises and in hybrid environments |
US10733532B2 (en) * | 2016-01-27 | 2020-08-04 | Bonsai AI, Inc. | Multiple user interfaces of an artificial intelligence system to accommodate different types of users solving different types of problems with artificial intelligence |
US11868896B2 (en) | 2016-01-27 | 2024-01-09 | Microsoft Technology Licensing, Llc | Interface for working with simulations on premises |
US11138157B2 (en) * | 2017-08-30 | 2021-10-05 | Jpmorgan Chase Bank, N.A. | System and method for identifying business logic and data lineage with machine learning |
US10671435B1 (en) | 2017-10-19 | 2020-06-02 | Pure Storage, Inc. | Data transformation caching in an artificial intelligence infrastructure |
US10360214B2 (en) * | 2017-10-19 | 2019-07-23 | Pure Storage, Inc. | Ensuring reproducibility in an artificial intelligence infrastructure |
US12067466B2 (en) | 2017-10-19 | 2024-08-20 | Pure Storage, Inc. | Artificial intelligence and machine learning hyperscale infrastructure |
US11494692B1 (en) | 2018-03-26 | 2022-11-08 | Pure Storage, Inc. | Hyperscale artificial intelligence and machine learning infrastructure |
US11645277B2 (en) * | 2017-12-11 | 2023-05-09 | Google Llc | Generating and/or utilizing a machine learning model in response to a search request |
US11245777B1 (en) * | 2018-09-11 | 2022-02-08 | Groupon, Inc. | Multi-application interactive support and communication interface |
JP7087931B2 (ja) * | 2018-11-08 | 2022-06-21 | 富士通株式会社 | 探索プログラム、探索方法及び探索装置 |
US11036607B2 (en) * | 2019-09-06 | 2021-06-15 | Ebay Inc. | Visualization of high-dimensional data |
US11385782B2 (en) * | 2019-09-06 | 2022-07-12 | Ebay Inc. | Machine learning-based interactive visual monitoring tool for high dimensional data sets across multiple KPIs |
US11941496B2 (en) * | 2020-03-19 | 2024-03-26 | International Business Machines Corporation | Providing predictions based on a prediction accuracy model using machine learning |
CN111581545B (zh) * | 2020-05-12 | 2023-09-19 | 腾讯科技(深圳)有限公司 | 一种召回文档的排序方法及相关设备 |
CN111695739B (zh) * | 2020-06-17 | 2022-06-14 | 广东电网有限责任公司计量中心 | 一种负荷预测方法、系统以及设备 |
CN113792904A (zh) * | 2021-07-19 | 2021-12-14 | 陈启达 | 一种基于决策树的博物馆游客感兴趣点预测方法 |
Family Cites Families (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5652829A (en) | 1994-07-26 | 1997-07-29 | International Business Machines Corporation | Feature merit generator |
US5978497A (en) | 1994-09-20 | 1999-11-02 | Neopath, Inc. | Apparatus for the identification of free-lying cells |
US6115802A (en) | 1995-10-13 | 2000-09-05 | Sun Mircrosystems, Inc. | Efficient hash table for use in multi-threaded environments |
US5657424A (en) | 1995-10-31 | 1997-08-12 | Dictaphone Corporation | Isolated word recognition using decision tree classifiers and time-indexed feature vectors |
US6360220B1 (en) | 1998-08-04 | 2002-03-19 | Microsoft Corporation | Lock-free methods and systems for accessing and storing information in an indexed computer data structure having modifiable entries |
US6279004B1 (en) | 1998-12-22 | 2001-08-21 | International Business Machines Corporation | Database index key versioning |
US6523015B1 (en) | 1999-10-14 | 2003-02-18 | Kxen | Robust modeling |
CN1241135C (zh) | 1999-10-21 | 2006-02-08 | 国际商业机器公司 | 用于排序分类属性以更好地可视化多维数据的系统和方法 |
US7113932B2 (en) | 2001-02-07 | 2006-09-26 | Mci, Llc | Artificial intelligence trending system |
US20020143787A1 (en) | 2001-03-31 | 2002-10-03 | Simon Knee | Fast classless inter-domain routing (CIDR) lookups |
US20020188424A1 (en) | 2001-04-20 | 2002-12-12 | Grinstein Georges G. | Method and system for data analysis |
US20030014405A1 (en) | 2001-07-09 | 2003-01-16 | Jacob Shapiro | Search engine designed for handling long queries |
US6871201B2 (en) | 2001-07-31 | 2005-03-22 | International Business Machines Corporation | Method for building space-splitting decision tree |
US6748401B2 (en) | 2001-10-11 | 2004-06-08 | International Business Machines Corporation | Method and system for dynamically managing hash pool data structures |
JP3791908B2 (ja) | 2002-02-22 | 2006-06-28 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 検索システム、システム、検索方法およびプログラム |
US7451065B2 (en) * | 2002-03-11 | 2008-11-11 | International Business Machines Corporation | Method for constructing segmentation-based predictive models |
JP2005523533A (ja) * | 2002-04-19 | 2005-08-04 | コンピュータ アソシエイツ シンク,インコーポレイテッド | 混合型数字及び/又は非数字データの処理 |
US7272590B2 (en) | 2002-04-26 | 2007-09-18 | International Business Machines Corporation | System and method for determining numerical representations for categorical data fields |
US7349917B2 (en) | 2002-10-01 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | Hierarchical categorization method and system with automatic local selection of classifiers |
US7020593B2 (en) | 2002-12-04 | 2006-03-28 | International Business Machines Corporation | Method for ensemble predictive modeling by multiplicative adjustment of class probability: APM (adjusted probability model) |
US7606714B2 (en) | 2003-02-11 | 2009-10-20 | Microsoft Corporation | Natural language classification within an automated response system |
US7197497B2 (en) * | 2003-04-25 | 2007-03-27 | Overture Services, Inc. | Method and apparatus for machine learning a document relevance function |
US8136025B1 (en) * | 2003-07-03 | 2012-03-13 | Google Inc. | Assigning document identification tags |
US7409587B2 (en) | 2004-08-24 | 2008-08-05 | Symantec Operating Corporation | Recovering from storage transaction failures using checkpoints |
US6988180B2 (en) | 2003-09-29 | 2006-01-17 | Microsoft Corporation | Method and apparatus for lock-free, non-blocking hash table |
US7702628B1 (en) | 2003-09-29 | 2010-04-20 | Sun Microsystems, Inc. | Implementing a fully dynamic lock-free hash table without dummy nodes |
US20060026138A1 (en) | 2004-01-09 | 2006-02-02 | Gavin Robertson | Real-time indexes |
US7287012B2 (en) | 2004-01-09 | 2007-10-23 | Microsoft Corporation | Machine-learned approach to determining document relevance for search over large electronic collections of documents |
EP1723596A1 (en) | 2004-02-27 | 2006-11-22 | Accenture Global Services GmbH | System for individualized customer interaction |
US7349926B2 (en) | 2004-03-30 | 2008-03-25 | International Business Machines Corporation | Atomic renaming and moving of data files while permitting lock-free look-ups |
US7574409B2 (en) | 2004-11-04 | 2009-08-11 | Vericept Corporation | Method, apparatus, and system for clustering and classification |
US20060112121A1 (en) | 2004-11-23 | 2006-05-25 | Mckenney Paul E | Atomically moving list elements between lists using read-copy update |
US7613701B2 (en) | 2004-12-22 | 2009-11-03 | International Business Machines Corporation | Matching of complex nested objects by multilevel hashing |
CA2594181A1 (en) | 2004-12-30 | 2006-07-06 | Proventys, Inc. | Methods, systems, and computer program products for developing and using predictive models for predicting a plurality of medical outcomes, for evaluating intervention strategies, and for simultaneously validating biomarker causality |
US7451166B2 (en) | 2005-01-13 | 2008-11-11 | International Business Machines Corporation | System and method for maintaining checkpoints of a keyed data structure using a sequential log |
US7328218B2 (en) | 2005-03-22 | 2008-02-05 | Salford Systems | Constrained tree structure method and system |
US20070005646A1 (en) * | 2005-06-30 | 2007-01-04 | Microsoft Corporation | Analysis of topic dynamics of web search |
US7673233B2 (en) | 2005-09-08 | 2010-03-02 | Microsoft Corporation | Browser tab management |
US8341158B2 (en) | 2005-11-21 | 2012-12-25 | Sony Corporation | User's preference prediction from collective rating data |
US20070208730A1 (en) * | 2006-03-02 | 2007-09-06 | Microsoft Corporation | Mining web search user behavior to enhance web search relevance |
US7949186B2 (en) | 2006-03-15 | 2011-05-24 | Massachusetts Institute Of Technology | Pyramid match kernel and related techniques |
US8214157B2 (en) | 2006-03-31 | 2012-07-03 | Nodality, Inc. | Method and apparatus for representing multidimensional data |
US20070244747A1 (en) | 2006-04-14 | 2007-10-18 | Nikovski Daniel N | Method and system for recommending products to consumers by induction of decision trees |
US8694318B2 (en) | 2006-09-19 | 2014-04-08 | At&T Intellectual Property I, L. P. | Methods, systems, and products for indexing content |
US7801836B2 (en) | 2006-09-27 | 2010-09-21 | Infosys Technologies Ltd. | Automated predictive data mining model selection using a genetic algorithm |
US8661029B1 (en) | 2006-11-02 | 2014-02-25 | Google Inc. | Modifying search result ranking based on implicit user feedback |
US7668851B2 (en) | 2006-11-29 | 2010-02-23 | International Business Machines Corporation | Lockless hash table lookups while performing key update on hash table element |
US8250075B2 (en) | 2006-12-22 | 2012-08-21 | Palo Alto Research Center Incorporated | System and method for generation of computer index files |
US7743003B1 (en) | 2007-05-16 | 2010-06-22 | Google Inc. | Scaling machine learning using approximate counting that uses feature hashing |
FR2917259B1 (fr) | 2007-06-08 | 2009-08-21 | Alcatel Lucent Sas | Utilisation d'un arbre de hachage a prefixes (pht) pour la localisation des services au sein d'un reseau de communication poste-a-poste |
US8287639B2 (en) | 2007-07-31 | 2012-10-16 | Cognis Ip Management Gmbh | Methods and compositions for improving air entrainment in cementitious mixtures |
US7916728B1 (en) | 2007-09-28 | 2011-03-29 | F5 Networks, Inc. | Lockless atomic table update |
NO327653B1 (no) | 2007-12-20 | 2009-09-07 | Fast Search & Transfer As | Fremgangsmate for dynamisk oppdatering av en indeks og en sokemotor som implementerer samme |
US20090182723A1 (en) | 2008-01-10 | 2009-07-16 | Microsoft Corporation | Ranking search results using author extraction |
US8584233B1 (en) | 2008-05-05 | 2013-11-12 | Trend Micro Inc. | Providing malware-free web content to end users using dynamic templates |
US20090319481A1 (en) | 2008-06-18 | 2009-12-24 | Yahoo! Inc. | Framework for aggregating information of web pages from a website |
US8972410B2 (en) | 2008-07-30 | 2015-03-03 | Hewlett-Packard Development Company, L.P. | Identifying related objects in a computer database |
US8965881B2 (en) | 2008-08-15 | 2015-02-24 | Athena A. Smyros | Systems and methods for searching an index |
US8738436B2 (en) * | 2008-09-30 | 2014-05-27 | Yahoo! Inc. | Click through rate prediction system and method |
NZ572036A (en) | 2008-10-15 | 2010-03-26 | Nikola Kirilov Kasabov | Data analysis and predictive systems and related methodologies |
US8190537B1 (en) | 2008-10-31 | 2012-05-29 | Google Inc. | Feature selection for large scale models |
US8572071B2 (en) | 2008-12-19 | 2013-10-29 | Rutgers, The State University Of New Jersey | Systems and methods for data transformation using higher order learning |
US20100161385A1 (en) | 2008-12-19 | 2010-06-24 | Nxn Tech, Llc | Method and System for Content Based Demographics Prediction for Websites |
US8150723B2 (en) | 2009-01-09 | 2012-04-03 | Yahoo! Inc. | Large-scale behavioral targeting for advertising over a network |
US8537832B2 (en) | 2010-03-12 | 2013-09-17 | Lsi Corporation | Exception detection and thread rescheduling in a multi-core, multi-thread network processor |
US8935483B2 (en) | 2009-04-27 | 2015-01-13 | Lsi Corporation | Concurrent, coherent cache access for multiple threads in a multi-core, multi-thread network processor |
US8032550B2 (en) | 2009-05-11 | 2011-10-04 | Red Hat, Inc. | Federated document search by keywords |
US8032551B2 (en) | 2009-05-11 | 2011-10-04 | Red Hat, Inc. | Searching documents for successive hashed keywords |
US8396287B2 (en) | 2009-05-15 | 2013-03-12 | Google Inc. | Landmarks from digital photo collections |
US8611592B2 (en) | 2009-08-26 | 2013-12-17 | Apple Inc. | Landmark identification using metadata |
US10528972B2 (en) * | 2009-08-27 | 2020-01-07 | Micro Focus Llc | Predicting email responses |
US20110153611A1 (en) | 2009-12-22 | 2011-06-23 | Anil Babu Ankisettipalli | Extracting data from a report document |
US20110188715A1 (en) | 2010-02-01 | 2011-08-04 | Microsoft Corporation | Automatic Identification of Image Features |
US8738608B2 (en) | 2010-04-06 | 2014-05-27 | Justone Database, Inc. | Apparatus, systems and methods for data storage and/or retrieval based on a database model-agnostic, schema-agnostic and workload-agnostic data storage and access models |
US8370337B2 (en) | 2010-04-19 | 2013-02-05 | Microsoft Corporation | Ranking search results using click-based data |
US8510236B1 (en) | 2010-05-07 | 2013-08-13 | Google Inc. | Semi-supervised and unsupervised generation of hash functions |
US8521664B1 (en) | 2010-05-14 | 2013-08-27 | Google Inc. | Predictive analytical model matching |
US8473431B1 (en) | 2010-05-14 | 2013-06-25 | Google Inc. | Predictive analytic modeling platform |
US8438122B1 (en) | 2010-05-14 | 2013-05-07 | Google Inc. | Predictive analytic modeling platform |
US8543517B2 (en) | 2010-06-09 | 2013-09-24 | Microsoft Corporation | Distributed decision tree training |
US20120079212A1 (en) | 2010-09-23 | 2012-03-29 | International Business Machines Corporation | Architecture for sharing caches among multiple processes |
US8949158B2 (en) | 2010-10-25 | 2015-02-03 | Intelius Inc. | Cost-sensitive alternating decision trees for record linkage |
US8543586B2 (en) | 2010-11-24 | 2013-09-24 | International Business Machines Corporation | Determining points of interest using intelligent agents and semantic data |
US8533222B2 (en) | 2011-01-26 | 2013-09-10 | Google Inc. | Updateable predictive analytical modeling |
US8595154B2 (en) | 2011-01-26 | 2013-11-26 | Google Inc. | Dynamic predictive modeling platform |
US8924365B2 (en) | 2011-02-08 | 2014-12-30 | Wavemarket, Inc. | System and method for range search over distributive storage systems |
CN103429150B (zh) | 2011-03-11 | 2016-03-16 | 皇家飞利浦有限公司 | 用于监测生理信号的监测装置 |
US8533224B2 (en) | 2011-05-04 | 2013-09-10 | Google Inc. | Assessing accuracy of trained predictive models |
WO2012154657A2 (en) | 2011-05-06 | 2012-11-15 | The Penn State Research Foundation | Robust anomaly detection and regularized domain adaptation of classifiers with application to internet packet-flows |
US20120316981A1 (en) | 2011-06-08 | 2012-12-13 | Accenture Global Services Limited | High-risk procurement analytics and scoring system |
US8868472B1 (en) | 2011-06-15 | 2014-10-21 | Google Inc. | Confidence scoring in predictive modeling |
US8909564B1 (en) | 2011-06-21 | 2014-12-09 | Google Inc. | Predictive model evaluation and training based on utility |
EP2724269B1 (en) | 2011-06-27 | 2020-02-19 | Jethrodata Ltd. | System, method and data structure for fast loading, storing and access to huge data sets in real time |
US8762299B1 (en) | 2011-06-27 | 2014-06-24 | Google Inc. | Customized predictive analytical model training |
US8489632B1 (en) | 2011-06-28 | 2013-07-16 | Google Inc. | Predictive model training management |
US8843427B1 (en) | 2011-07-01 | 2014-09-23 | Google Inc. | Predictive modeling accuracy |
US20130117684A1 (en) | 2011-11-03 | 2013-05-09 | Microsoft Corporation | Dynamically generated icons for graphical user interface on client |
US9355095B2 (en) | 2011-12-30 | 2016-05-31 | Microsoft Technology Licensing, Llc | Click noise characterization model |
RU2491622C1 (ru) | 2012-01-25 | 2013-08-27 | Общество С Ограниченной Ответственностью "Центр Инноваций Натальи Касперской" | Способ классификации документов по категориям |
US8965829B2 (en) | 2012-02-09 | 2015-02-24 | Jeffrey L. Pattillo | System and method for making decisions using network-guided decision trees with multivariate splits |
US8655029B2 (en) | 2012-04-10 | 2014-02-18 | Seiko Epson Corporation | Hash-based face recognition system |
US8694444B2 (en) | 2012-04-20 | 2014-04-08 | Xerox Corporation | Learning multiple tasks with boosted decision trees |
US9955965B2 (en) | 2012-07-09 | 2018-05-01 | Covidien Lp | Switch block control assembly of a medical device |
JP5943762B2 (ja) | 2012-07-30 | 2016-07-05 | キヤノン株式会社 | シート搬送装置及び画像形成装置 |
US20140129493A1 (en) | 2012-10-11 | 2014-05-08 | Orboros, Inc. | Method and System for Visualizing Complex Data via a Multi-Agent Query Engine |
US9373087B2 (en) * | 2012-10-25 | 2016-06-21 | Microsoft Technology Licensing, Llc | Decision tree training in machine learning |
US8880446B2 (en) | 2012-11-15 | 2014-11-04 | Purepredictive, Inc. | Predictive analytics factory |
US10262330B2 (en) | 2013-01-04 | 2019-04-16 | PlaceIQ, Inc. | Location-based analytic platform and methods |
US20140195972A1 (en) | 2013-01-07 | 2014-07-10 | Electronics And Telecommunications Research Institute | Method and apparatus for managing programs or icons |
KR101822463B1 (ko) | 2013-01-21 | 2018-01-26 | 삼성전자주식회사 | 복수 개의 아이콘들을 화면상에 배치하는 장치 및 이의 운용 방법 |
US9324040B2 (en) | 2013-01-30 | 2016-04-26 | Technion Research & Development Foundation Limited | Training ensembles of randomized decision trees |
US9953270B2 (en) | 2013-05-07 | 2018-04-24 | Wise Io, Inc. | Scalable, memory-efficient machine learning and prediction for ensembles of decision trees for homogeneous and heterogeneous datasets |
US9633311B2 (en) * | 2013-07-03 | 2017-04-25 | Sas Institute Inc. | Decision tree learning |
US9639807B2 (en) | 2014-06-10 | 2017-05-02 | Jose Oriol Lopez Berengueres | Method and system for forecasting future events |
US9886670B2 (en) | 2014-06-30 | 2018-02-06 | Amazon Technologies, Inc. | Feature processing recipes for machine learning |
US10339465B2 (en) | 2014-06-30 | 2019-07-02 | Amazon Technologies, Inc. | Optimized decision tree based models |
US9348920B1 (en) | 2014-12-22 | 2016-05-24 | Palantir Technologies Inc. | Concept indexing among database of documents using machine learning techniques |
RU2015141339A (ru) | 2015-09-29 | 2017-04-04 | Общество С Ограниченной Ответственностью "Яндекс" | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования |
RU2632133C2 (ru) | 2015-09-29 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования |
US10380127B2 (en) | 2017-02-13 | 2019-08-13 | Microsoft Technology Licensing, Llc | Candidate search result generation |
-
2015
- 2015-09-29 RU RU2015141340A patent/RU2632133C2/ru active
-
2016
- 2016-09-13 US US15/263,654 patent/US10387801B2/en active Active
-
2019
- 2019-08-09 US US16/536,348 patent/US11341419B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10387801B2 (en) | 2015-09-29 | 2019-08-20 | Yandex Europe Ag | Method of and system for generating a prediction model and determining an accuracy of a prediction model |
US11341419B2 (en) | 2015-09-29 | 2022-05-24 | Yandex Europe Ag | Method of and system for generating a prediction model and determining an accuracy of a prediction model |
RU2694001C2 (ru) * | 2017-11-24 | 2019-07-08 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система создания параметра качества прогноза для прогностической модели, выполняемой в алгоритме машинного обучения |
US11256991B2 (en) | 2017-11-24 | 2022-02-22 | Yandex Europe Ag | Method of and server for converting a categorical feature value into a numeric representation thereof |
US11995519B2 (en) | 2017-11-24 | 2024-05-28 | Direct Cursus Technology L.L.C | Method of and server for converting categorical feature value into a numeric representation thereof and for generating a split value for the categorical feature |
Also Published As
Publication number | Publication date |
---|---|
US20190362267A1 (en) | 2019-11-28 |
RU2632133C2 (ru) | 2017-10-02 |
US10387801B2 (en) | 2019-08-20 |
US11341419B2 (en) | 2022-05-24 |
US20170091670A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2015141340A (ru) | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования | |
JP6073345B2 (ja) | 検索結果をランク付けする方法および装置ならびに検索方法および装置 | |
Svore et al. | Learning to rank with multiple objective functions | |
CN107193797B (zh) | 中文微博的热点话题检测及趋势预测方法 | |
US10366093B2 (en) | Query result bottom retrieval method and apparatus | |
CN104199833B (zh) | 一种网络搜索词的聚类方法和聚类装置 | |
RU2017111480A (ru) | Способ и система ранжирования множества документов на странице результатов поиска | |
Joho et al. | Overview of NTCIR-11 Temporal Information Access (Temporalia) Task. | |
RU2016145396A (ru) | Способ и устройство извлечения тематических предложений веб-страниц | |
CA3059929C (en) | Text searching method, apparatus, and non-transitory computer-readable storage medium | |
US9286379B2 (en) | Document quality measurement | |
US20210125108A1 (en) | Training a ranking model | |
CN111310023B (zh) | 基于记忆网络的个性化搜索方法及系统 | |
JP2016509711A5 (ru) | ||
US20120233096A1 (en) | Optimizing an index of web documents | |
CN103310003A (zh) | 一种基于点击日志的新广告点击率预测方法及系统 | |
WO2013075272A1 (en) | Prototype-based re-ranking of search results | |
RU2014118338A (ru) | Способ обработки поискового запроса, сервер и машиночитаемый носитель для его осуществления | |
CN106951526B (zh) | 一种实体集扩展方法及装置 | |
RU2015141339A (ru) | Способ (варианты) и система (варианты) создания модели прогнозирования и определения точности модели прогнозирования | |
CN110390352A (zh) | 一种基于相似性哈希的图像暗数据价值评估方法 | |
WO2011134141A1 (en) | Method of extracting named entity | |
RU2019111281A (ru) | Способ и сервер для повторного обучения алгоритма машинного обучения | |
Jiang et al. | PITT at TREC 2011 session track | |
CN113785317A (zh) | 使用因领域而异的建模来进行反馈挖掘 |