RU2015139250A - METHOD FOR PRODUCING SAMPLES OF NANOSTRUCTURED METAL MATERIALS - Google Patents

METHOD FOR PRODUCING SAMPLES OF NANOSTRUCTURED METAL MATERIALS Download PDF

Info

Publication number
RU2015139250A
RU2015139250A RU2015139250A RU2015139250A RU2015139250A RU 2015139250 A RU2015139250 A RU 2015139250A RU 2015139250 A RU2015139250 A RU 2015139250A RU 2015139250 A RU2015139250 A RU 2015139250A RU 2015139250 A RU2015139250 A RU 2015139250A
Authority
RU
Russia
Prior art keywords
melt
temperature
metal
producing
metal materials
Prior art date
Application number
RU2015139250A
Other languages
Russian (ru)
Other versions
RU2618302C2 (en
Inventor
Евгений Михайлович Соловьев
Алексей Вячеславович Матасов
Виталий Вячеславович Челноков
Original Assignee
Евгений Михайлович Соловьев
Алексей Вячеславович Матасов
Виталий Вячеславович Челноков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Михайлович Соловьев, Алексей Вячеславович Матасов, Виталий Вячеславович Челноков filed Critical Евгений Михайлович Соловьев
Priority to RU2015139250A priority Critical patent/RU2618302C2/en
Publication of RU2015139250A publication Critical patent/RU2015139250A/en
Application granted granted Critical
Publication of RU2618302C2 publication Critical patent/RU2618302C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Claims (1)

Способ получения образцов наноструктурированных металлических материалов, включающий способ получении моноструктур, который основан на создании в расплаве переохлаждений, соответствующих максимуму линейной скорости роста кристаллов, отличающийся тем, что кристаллизацию (отвердение) металлического расплава с заданной массой (G) и первоначальной температурой (Т0) осуществляют при его объемном переохлаждении в нестационарных условиях и заданных во времени (t) режимах воздействия поля центробежных сил (гравитационного поля), определяемого скоростью центрифугирования расплава (w) и изначально заданным радиусом его вращения при центрифугировании (R), а также температурно-тепловым воздействием на расплав от контактирующего с ним газового теплоносителя с заданными во времени характеристиками: температурой (Та) и расходом (Ga), причем скорость охлаждения материала может происходить от 0 до 100ºС/с, при этом форма металлического материала в процессе центрифугирования представляет собой полый тонкостенный вращающийся вокруг своей оси цилиндр, в полость которого с заданными во времени значениями расхода и температуры входит и выходит горячий газовый агент, а коэффициент перегрузки (гравитации) в диапазоне от 200 до 10000g в зависимости от требуемых и заданных характеристик зерна и монокристаллов в отвердевшем металлическом материале, а масса центрифугируемого металла достигает до 2000 кг и более.A method for producing samples of nanostructured metal materials, including a method for producing monostructures, which is based on creating subcoolings in the melt corresponding to the maximum linear crystal growth rate, characterized in that the crystallization (hardening) of the metal melt with a given mass (G) and initial temperature (T 0 ) carried out with its volume supercooling under non-stationary conditions and time-dependent (t) modes of exposure to the centrifugal force field (gravitational field), determined th melt centrifugation speed (w) and initially specify the radius of rotation during centrifugation (R), as well as temperature-thermal effect on the melt by contacting them coolant gas with a time specified characteristics: temperature (T a) and flow rate (G a) moreover, the cooling rate of the material can occur from 0 to 100 ° C / s, while the shape of the metal material during centrifugation is a hollow thin-walled cylinder rotating around its axis, into the cavity of which with At the same time, a hot gas agent enters and exits with the values of flow rate and temperature, and the overload (gravity) coefficient is in the range from 200 to 10000 g depending on the required and specified characteristics of grain and single crystals in the hardened metal material, and the mass of the centrifuged metal reaches up to 2000 kg and more.
RU2015139250A 2015-09-15 2015-09-15 Method of obtaining nanostructured metal products RU2618302C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015139250A RU2618302C2 (en) 2015-09-15 2015-09-15 Method of obtaining nanostructured metal products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015139250A RU2618302C2 (en) 2015-09-15 2015-09-15 Method of obtaining nanostructured metal products

Publications (2)

Publication Number Publication Date
RU2015139250A true RU2015139250A (en) 2017-03-21
RU2618302C2 RU2618302C2 (en) 2017-05-03

Family

ID=58454664

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015139250A RU2618302C2 (en) 2015-09-15 2015-09-15 Method of obtaining nanostructured metal products

Country Status (1)

Country Link
RU (1) RU2618302C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763366C1 (en) * 2021-06-10 2021-12-28 Соловьева Мария Петровна Method for obtaining restructured zinc

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU605677A1 (en) * 1976-10-15 1978-05-05 Предприятие П/Я В-8889 Device for casting tube blanks
RU2027542C1 (en) * 1993-06-29 1995-01-27 Акционерное общество "Буммаш" Method of production of casting
RU2296175C1 (en) * 2005-08-09 2007-03-27 Олег Владимирович Анисимов Method of production of the alloying additives for production of alloys
RU2339485C2 (en) * 2006-01-16 2008-11-27 Олег Владимирович Анисимов Method for manufacturing foundry from metallic melt
RU2395610C2 (en) * 2008-07-17 2010-07-27 Олег Владимирович Анисимов Procedure for generation of additives and addition alloys for production of alloys

Also Published As

Publication number Publication date
RU2618302C2 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
RU2652526C2 (en) Method for manufacturing a component using the lost-wax casting and with controlled cooling
Guo et al. Grain refinement of Al–5% Cu aluminum alloy under mechanical vibration using meltable vibrating probe
EA201001509A1 (en) METHOD OF MANUFACTURING CASTINGS BY THE METHOD OF DIRECTED CRYSTALLIZATION FROM A TARGED MELTING POINT TO THE PERIPHERY OF CASTING
RU2015139250A (en) METHOD FOR PRODUCING SAMPLES OF NANOSTRUCTURED METAL MATERIALS
RU2312156C2 (en) Method of production of superpurity metals and monocrystals from them
IN2014DN05709A (en)
RU2005108104A (en) METHOD OF CENTRIFUGAL BIMETALLIZATION OF BUSHES
RU2006100567A (en) METHOD FOR CHANGEING GRAIN LARGE CASTING OF TECHNICAL MELTS
RU2018135646A (en) METHODS FOR IMPROVING THE MICROSTRUCTURE BY MIXING IN THE FUSION BATH OF MATERIALS OBTAINED BY ADDITIVE TECHNOLOGY
Yu et al. Numerical simulation and experimental validation of nondendritic structure formation in magnesium alloy under oscillation and ultrasonic vibration
Xuan et al. Formation of stray grain in cross section area for Ni-based superalloy during directional solidification
RU2008129154A (en) METHOD FOR PRODUCING ADDITIVES AND LIGATURES FOR PRODUCING ALLOYS
Lall et al. High strain rate properties of sac105 and sac305 leadfree alloys after extended high temperature storage
冀焕明 et al. Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy
RU2009105199A (en) METHOD FOR PRODUCING TECHNICALLY PURE METAL AND SINGLE CRYSTAL FROM IT
PL414763A1 (en) Method for centrifugal casting of small sized products from ferritic-austenitic cast steel
RU2008112924A (en) METHOD FOR PRODUCING LAYERED METAL MATERIALS BY CRYSTALIZATION IN THE CENTRIFUGE POWER FIELD
Tahmasbi et al. Morphology of Tourmaline in the Mashhad granites (g2) with using fractal analysis and Diffusion-Limited Aggregation
RU2016119724A (en) The method of controlling the formation of a homogeneous quasicrystalline structure during crystallization under pressure
Władysiak Water mist effect on cooling process of casting die and microstructure of AlSi9 alloy
PL423323A1 (en) Method for production of magnesium alloys with the alloy additions that have melting temperature above 650�C and density above 1.737 g/cm3
RU2015101782A (en) METHOD FOR CENTRIFUGAL CASTING OF THIN-WALL PIPES FROM HEAT-RESISTANT ALLOYS
Kai et al. Effects of cooling rate on high-temperature mechanical properties of A356 alloys
UA56780U (en) Method for producing castings with adjustable ratio of structural components
PL427471A1 (en) Method and device for intensive shearing and mixing of alloys in the liquid phase and in the temperature range between solidus and liquidus

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180916