RU2014661C1 - Ламповый генератор-формирователь наносекундных радиоимпульсов - Google Patents

Ламповый генератор-формирователь наносекундных радиоимпульсов Download PDF

Info

Publication number
RU2014661C1
RU2014661C1 SU5046422A RU2014661C1 RU 2014661 C1 RU2014661 C1 RU 2014661C1 SU 5046422 A SU5046422 A SU 5046422A RU 2014661 C1 RU2014661 C1 RU 2014661C1
Authority
RU
Russia
Prior art keywords
tee
generator
shaper
coaxial
resonator
Prior art date
Application number
Other languages
English (en)
Inventor
С.Н. Артеменко
В.Л. Каминский
Ю.Г. Юшков
Original Assignee
Товарищество с ограниченной ответственностью "Резонанс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью "Резонанс" filed Critical Товарищество с ограниченной ответственностью "Резонанс"
Priority to SU5046422 priority Critical patent/RU2014661C1/ru
Application granted granted Critical
Publication of RU2014661C1 publication Critical patent/RU2014661C1/ru

Links

Images

Abstract

Использование: в ускорительной технике, радиолокации, при проведении исследований в области физики плазмы. Сущность изобретения: конструкция источника мощных наносекундных радиоимпульсов совмещает в себе ламповый СВЧ-автогенератор и формирователь импульсов на основе коаксиального тройника. Совмещение достигается путем объединения выходного контура автогенератора и накопительного резонатора формирователя. Конструкция позволяет повысить КПД прибора и улучшить его массогабаритные характеристики. 2 ил.

Description

Изобретение относится к устройствам, преобразующим энергию пучка электронов в мощное электромагнитное излучение СВЧ-диапазона, и может быть использовано в ускорительной технике, радиолокации, при проведении исследований в области физики плазмы и т.п.
Ламповые СВЧ-автогенераторы хорошо известны и представляют собой СВЧ-триод или тетрод, включенный в двухконтурную коаксиальную колебательную систему с положительной обратной связью между входным и выходным контурами (см. например, Ионов Ю.А. Ламповые генераторы сверхвысокой частоты. Изд-во ЛГУ, 1973). При этом для обеспечения оптимального режима работы лампы выходной контур, связанный с нагрузкой, работает на основном тоне либо первом обертоне. Одним из основных недостатков таких генераторов является относительно невысокий уровень мощности излучения по сравнению с мощностью бегущей волны и выходном контуре.
Достаточно широко известны формирователи наносекундных радиоимпульсов, работающие на основе накопления и быстрого вывода СВЧ-энергии из объемных резонаторов. В таких устройствах мощность излучения, как правило, сравнима с мощностью бегущей волны в накопительном резонаторе, но при этом они имеют более низкий КПД и худшие массогабаритные характеристики.
Так, например, известен формирователь (Атомная техника за рубежом, 1982, N 11, с.36), в котором цилиндрический либо сферический накопительный резонатор сильно связан с прямоугольным волноводным Е-или Е-тройником, служащим элементом вывода энергии. Переключение такого формирователя из режима накопления в режим вывода осуществляется коммутатором, расположенным в закороченном плече тройника. В режиме накопления тройник закрыт. Имитируя быстрое перемещение закоротки на расстояние четверти длины волны λ от исходного ее положения, коммутатор при поджиге в нем СВЧ-разряда открывает тройник и тем самым создает условия для "вытекания" накопленной энергии в нагрузку в виде короткого и мощного радиоимпульса. После вывода энергии коммутатор отключается и процесс накопления повторяется.
Известны другие формирователи (авт.св. N 862800, 1121776, 1277864) отличающиеся конструктивным исполнением и принципами организации процесса вывода энергии.
Наиболее близким по техническому исполнению к предлагаемому является формирователь импульсов (авт. св. СССР N 1487776), в котором накопление энергии осуществляется в резонаторе, выполненном в виде коаксиального тройника, к первому плечу которого через элемент ввода энергии подключен СВЧ-генератор непрерывных колебаний, второе - боковое плечо снабжено короткозамыкающим поршнем, а третье является выходом формирователя. Коммутатор формирователя выполнен в виде разрядного промежутка, образованного разрывом внутреннего проводника коаксиала бокового плеча тройника на расстоянии
Figure 00000001
oт закоротки этого плеча.
В таком формирователе электромагнитные колебания от питающего генератора через развязывающий элемент (ферритовый вентиль, волноводный мост и т.п. ) и элемент ввода энергии поступают в накопительный резонатор. Расстояние от точки разветвления коаксиального тройника до разрядного промежутка коммутатора выбрано из условия противофазности волн, излучаемых в нагрузку из первого и бокового плеч тройника, в силу чего в режиме накопления излучения энергии из резонатора в нагрузку не происходит. При срабатывании коммутатора электрическая длина бокового плеча изменяется так, что волны, излучаемые в нагрузку из этого плеча тройника и первого прямого плеча, становятся синфазными, и, следовательно, тройник открывается и накопленная энергия выводится в нагрузку. После этого коммутатор отключается и система переходит в режим накопления.
Основными недостатками формирователя-прототипа, как и всех остальных устройств такого типа, является низкая эффективность использования энергии питающего генератора (как известно, эффективность накопления энергии обычно не превышает 0,4-0,5), необходимость применения внешнего по отношению к питающему генератору накопительного резонатора, а также необходимость использования развязывающего элемента между генератором и резонатором. Низкая эффективность использования энергии генератора приводит к низким значениям КПД формирователей η , так как η = η1 η2 η3 η4 , где η1 - электронный КПД генератора; η2 - КПД его выходного контура; η3 - эффективность накопления; η4 - эффективность вывода. Обычно для формирователей η≈ 0,1-0,2. Применение внешнего накопительного резонатора и развязывающего элемента увеличивает вес и габариты прибора.
В предлагаемом генераторе-формирователе, содержащем питающий генератор, накопительный резонатоp на основе коаксиального тройника и коммутатор, выполненный в боковом закороченном плече тройника в виде разрядного промежутка, который образован разрывом внутреннего проводника коаксиала на расстоянии λ /8 от закоротки, для повышения КПД и улучшения массогабаритных характеристик накопительный резонатор объединен с выходным резонатором лампового СВЧ-генератора. При этом длина L выходного резонатора взята удовлетворяющей соотношению
L=
Figure 00000002
arctg
Figure 00000003
+
Figure 00000004
,
где n - целое число от 2 до 8; λ - длина волны; ω - циклическая рабочая частота ; Со - анодно-сеточная емкость; Z - волновое сопротивление коаксиала.
Возможность создания такого устройства обусловлена тем, что, как известно, любой СВЧ-генератор представляет собой накопительную колебательную систему, в которую энергия поступает от пучка ускоренных электронов и которая достаточно сильно связана с нагрузкой, но в основе своей ничем не отличается от накопительной системы формирователя. Поэтому совмещение генератора накачки и формирователя наносекундных радиоимпульсов в одном приборе представляется вполне логичным. При этом очевидно, что такое совмещение в принципе может позволить создать более компактный и эффективный источник мощного СВЧ-излучения, чем формирователи, так как отпадает необходимость во внешнем накопительном резонаторе, а следовательно, и в развязывающем элементе и КПД приборе определяется только электронным КПД генератора и эффективностью вывода энергии (η = η1 η4 = 0,3-0,6). Вместе с тем при таком совмещении для обеспечения оптимального режима работы лампы необходимо соответствующим образом изменить и электрофизические характеристики выходного колебательного контура. Можно показать, что СВЧ-автогенератор с ненагруженным на внешнюю нагрузку выходным контуром работает в оптимальном режиме, если контур возбуждается на обертонах, начина с второго, но не выше пятого-восьмого. Применение более высокого обертонов нежелательно еще и по причине возможности работы автогенератора одновременно на двух соседних частотах.
На фиг.1 изображено предлагаемый ламповый генератор-формирователь наносекундных радиоимпульсов; на фиг.2 - схема экспериментальной установки, на которой была проверена его работоспособность.
Ламповый генератор-формирователь содержит СВЧ-триод 1, катодно-сеточный коаксиальный резонатор 2, анодно-сеточный коаксиальный резонатор 3, играющий роль накопителя СВЧ-энергии, элемент вывода энергии, выполненный в виде коаксиального тройника 4 с завкороченным боковым плечом и встроенным в него коммутатором 5, а также выходную нагрузку 6.
Соотношение размеров генератора-формирователя следующие. Диаметры D и L внешнего и внутреннего проводников коаксиальных резонаторов 2 и 3 удовлетворяют условиям D+d<
Figure 00000005
;
Figure 00000006
≈ 2. Длины резонаторов l и L определяется соотношениями
L=
Figure 00000007
arctg
Figure 00000008
;
L=
Figure 00000009
arctg
Figure 00000010
+
Figure 00000011
, где n = 2,...,8; Co и C1 - соответственно анодно-сеточная и катодно-сеточная емкость триода. Длина бокового плеча тройника 4 равна
Figure 00000012
λ , разрядный промежуток расположен на расстоянии
Figure 00000013
от закоротки этого плеча, а величина зазора Δ определяется равенством
Δ=
Figure 00000014
, где εo = 8,854.10-12 Ф/м ; с - скорость света.
Генератор-формирователь работает следующим образом.
При подаче на СВЧ-триод импульсов питающего напряжения в системе контуров 2,3 автогенератора устанавливаются электромагнитные колебания. При этом в силу выбора длины бокового плеча тройника 4 волны, излучаемые в нагрузку 6, суммируются в противофазе и, следовательно, накопительный резонатор 3 закрыт. По достижении в анодном контуре автогенератора пробивной напряженности ВЧ-поля срабатывает коммутатор 5, т.е. происходит пробой разрядного промежутка Δ , и электрическая длина бокового плеча тройника изменяется таким образом, что волны, излучаемые в нагрузка 6 из резонатора 3 и бокового плеча, суммируются синфазно, т.е. тройник отрывается и накопленная энергия поступает в нагрузку. При этом напряженность поля в разрядном промежутке падает и промежуток размыкается, а тройник закрывается. Таким образом устройство возвращается в исходное состояние и может повторяться процесс накопления энергии.
Работоспособность предлагаемого генератора-формирователя СВЧ-импульсов была проверена на устройстве со следующими размерами: диаметры D и d соответственно равнялись 4 и 2,2 см, длина выходного резонатора от анода лампы до оси бокового плеча тройника составляла 88,3 см, а длина катодно-сеточного резонатора равнялась 5,2 см, длина бокового плеча тройника от оси резонатора 3 до закорачивающего поршня составляла 25 см, а ширина зазораΔ ≈ 0,1 см.
Схема экспериментальной установки, на которой проводилась проверка работоспособности формирователя, приведена на фиг.2, где 7 - генератор-формирователь, 8 - источник питающих напряжений, 9 - аттенюатор, 10 - осциллограф.
Анодная модуляция автогенератора осуществлялась подачей на катод импульсов напряжения амплитудой до 5 кВ и длительностью ≈ 5 мкс. Настройка генератора осуществляется изменением высоты разрядного промежутка Δ коммутатора 5. В случае настройки промежутка на максимальное запирание тройника при анодном напряжении 5 кВ и токе 2 А по достижении на промежутке напряжения пробоя на выходе прибора фиксировались радиоимпульсы мощностью до 5 кВт (при колебательной мощности лампы ≈ 3-4 кВт) с длительностью 5 ес по уровню 0,5. Измерения параметров импульсов проводились с помощью осциллографа С9-4 и набора калиброванных аттенюаторов. КПД прибора в целом оценивался как величина ≈ 0,3-0,35, то в -3 раза выше, чем КПД известных формирователей.
Технические преимущества предлагаемого формирователя СВЧ-импульсов по сравнению с прототипом состоят в повышении в 2-3 раза КПД и излучении массогабаритных характеристик.

Claims (1)

  1. ЛАМПОВЫЙ ГЕНЕРАТОР-ФОРМИРОВАТЕЛЬ НАНОСЕКУНДНЫХ РАДИОИМПУЛЬСОВ, содержащий питающий генератор, накопительный резонатор на основе коаксиального тройника и коммутатор, выполненный в боковом закороченном плече тройника в виде разрядного промежутка, который образован разрывом внутреннего проводника коаксиала на расстоянии
    Figure 00000015
    закоротки плеча, отличающийся тем, что выходной колебательный контур генератора выполнен в виде накопительного резонатора-формирователя с длиной L, удовлетворяющей равенству
    L=
    Figure 00000016
    arctg
    Figure 00000017
    +
    Figure 00000018
    ,
    где n - целое число от 2 до 8;
    W - циклическая рабочая частота;
    λ - длина волны;
    Z - волновое сопротивление коаксиала;
    Cо - анодно-сеточная емкость триода.
SU5046422 1992-03-04 1992-03-04 Ламповый генератор-формирователь наносекундных радиоимпульсов RU2014661C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5046422 RU2014661C1 (ru) 1992-03-04 1992-03-04 Ламповый генератор-формирователь наносекундных радиоимпульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5046422 RU2014661C1 (ru) 1992-03-04 1992-03-04 Ламповый генератор-формирователь наносекундных радиоимпульсов

Publications (1)

Publication Number Publication Date
RU2014661C1 true RU2014661C1 (ru) 1994-06-15

Family

ID=21606353

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5046422 RU2014661C1 (ru) 1992-03-04 1992-03-04 Ламповый генератор-формирователь наносекундных радиоимпульсов

Country Status (1)

Country Link
RU (1) RU2014661C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522894C2 (ru) * 2012-08-24 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Генератор высокочастотного излучения на основе разряда с полым катодом (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522894C2 (ru) * 2012-08-24 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Генератор высокочастотного излучения на основе разряда с полым катодом (варианты)

Similar Documents

Publication Publication Date Title
US5534824A (en) Pulsed-current electron beam method and apparatus for use in generating and amplifying electromagnetic energy
Serlin et al. Development and optimization of the relativistic klystron amplifier
Kurkan et al. A possible method of reducing the magnetic field in a relativistic backward-wave tube
US4466101A (en) Relativistic electron synchrotron laser oscillator or amplifier
Vikharev et al. High power active X-band pulse compressor using plasma switches
Ogura et al. Performance of weakly relativistic oversized backward wave oscillators
Bratman et al. Sources of coherent terahertz radiation
RU2014661C1 (ru) Ламповый генератор-формирователь наносекундных радиоимпульсов
US3919666A (en) Solid state microwave cavity oscillator operating below cavity cutoff frequency
Hendricks et al. Increasing the RF energy per pulse of an RKO
US4227153A (en) Pulse generator utilizing superconducting apparatus
US2601539A (en) Two-frequency microwave oscillator
RU2342733C1 (ru) Устройство для генерирования электрических импульсов напряжения
RU2422938C1 (ru) Релятивистский магнетрон с волноводными выводами мощности
US5164634A (en) Electron beam device generating microwave energy via a modulated virtual cathode
RU2118041C1 (ru) Устройство для получения мощных ультракоротких свч импульсов
US2591696A (en) High-frequency electron tube structure
Litvin et al. Plasma high-current generator of wideband high-power microwaves with magnetic self-insulation
Abubakirov et al. Relativistic backward wave oscillator using a selective mode converter
US3359452A (en) Resonator for supporting non-sinus-oidal preiodic waveforms
Denisov et al. Studying of the 95/285 GHz gyrotron with frequency multiplication
USH6H (en) Generation of a modulated IREB with a frequency tunable by a magnetic field
CA2536013A1 (en) Magnetron
Bandurkin et al. Terahertz Large-Orbit High-Harmonic Gyrotrons at IAP RAS Features
Dubey et al. Power and Efficiency Enhancement of the Reltron Using Dual RF Output Cavities