RU2014136780A - Method for seismic monitoring of hydrocarbon field development in water areas - Google Patents

Method for seismic monitoring of hydrocarbon field development in water areas Download PDF

Info

Publication number
RU2014136780A
RU2014136780A RU2014136780A RU2014136780A RU2014136780A RU 2014136780 A RU2014136780 A RU 2014136780A RU 2014136780 A RU2014136780 A RU 2014136780A RU 2014136780 A RU2014136780 A RU 2014136780A RU 2014136780 A RU2014136780 A RU 2014136780A
Authority
RU
Russia
Prior art keywords
seismic
drilling
well
dimensional
orientation
Prior art date
Application number
RU2014136780A
Other languages
Russian (ru)
Other versions
RU2602735C2 (en
Inventor
Василий Игоревич Богоявленский
Герман Адольфович Максимов
Алексей Викторович Гладилин
Original Assignee
Открытое акционерное общество "Акустический институт имени академика Н.Н. Андреева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Акустический институт имени академика Н.Н. Андреева" filed Critical Открытое акционерное общество "Акустический институт имени академика Н.Н. Андреева"
Priority to RU2014136780/28A priority Critical patent/RU2602735C2/en
Publication of RU2014136780A publication Critical patent/RU2014136780A/en
Application granted granted Critical
Publication of RU2602735C2 publication Critical patent/RU2602735C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers
    • G01V1/3852Deployment of seismic devices, e.g. of streamers to the seabed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/121Active source
    • G01V2210/1216Drilling-related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/642Faults

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oceanography (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

1. Способ сейсмического мониторинга процесса освоения месторождения углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс, отличающийся тем, что до начала бурения запроектированного горизонтального участка скважины размещают мобильную расстановку сейсмокос на дно по радиальной разноазимутальной системе наблюдений на объекте исследований с центром, расположенным над горизонтальным участком скважины, в процессе бурения регистрируют микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, а после завершения бурения скважины расстановку сейсмокос демонтируют и перемещают на новый объект исследований.2. Способ по п. 1, отличающийся тем, что в процессе гидроразрыва пласта регистрируют микросейсмические колебания, определяют трехмерные координаты их источников и дополнительно уточняют трехмерную модель резервуара и ориентацию системы трещин.1. A method of seismic monitoring of the process of developing a hydrocarbon field in water areas, including conducting three-dimensional seismic exploration and building a reservoir model based on it, predicting the orientation of subvertical fracture systems and designing the location of production and injection wells, placing stationary seismic streamers at the bottom of the water area, recording elastic seismic surveys fluctuations from artificial sources and control of the process of developing a hydrocarbon field by dyne physical and kinematic changes in the recorded oscillations during processing of seismic surveys, characterized in that prior to the start of drilling the designed horizontal section of the well, a mobile arrangement of seismic skids is placed on the bottom along a radially different-azimuth observation system at the research object with a center located above the horizontal section of the well, microseismic vibrations are recorded during drilling excited by a bit at the bottom of the well, during the processing of which according to dynamic and kinematic characteristics sticks are determined by the anisotropic properties of the medium in the drilling zone, the orientation of the subvertical fracture systems is refined, and three-dimensional reservoir models are corrected, and after completion of the well drilling, the seismic line arrangement is dismantled and moved to a new research object. 2. The method according to claim 1, characterized in that during the hydraulic fracturing process microseismic vibrations are recorded, three-dimensional coordinates of their sources are determined and an additional three-dimensional model of the reservoir and the orientation of the fracture system are specified.

Claims (2)

1. Способ сейсмического мониторинга процесса освоения месторождения углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс, отличающийся тем, что до начала бурения запроектированного горизонтального участка скважины размещают мобильную расстановку сейсмокос на дно по радиальной разноазимутальной системе наблюдений на объекте исследований с центром, расположенным над горизонтальным участком скважины, в процессе бурения регистрируют микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, а после завершения бурения скважины расстановку сейсмокос демонтируют и перемещают на новый объект исследований.1. A method of seismic monitoring of the process of developing a hydrocarbon field in water areas, including conducting three-dimensional seismic exploration and building a reservoir model based on it, predicting the orientation of subvertical fracture systems and designing the location of production and injection wells, placing stationary seismic streamers at the bottom of the water area, recording elastic seismic surveys fluctuations from artificial sources and control of the process of developing a hydrocarbon field by dyne physical and kinematic changes in the recorded oscillations during processing of seismic surveys, characterized in that prior to the start of drilling the designed horizontal section of the well, a mobile arrangement of seismic skids is placed on the bottom along a radially different-azimuth observation system at the research object with a center located above the horizontal section of the well, microseismic vibrations are recorded during drilling excited by a bit at the bottom of the well, during the processing of which according to dynamic and kinematic characteristics sticks are determined by the anisotropic properties of the medium in the drilling zone, the orientation of the subvertical fracture systems is refined, and three-dimensional reservoir models are corrected, and after completion of the well drilling, the seismic line arrangement is dismantled and moved to a new research object. 2. Способ по п. 1, отличающийся тем, что в процессе гидроразрыва пласта регистрируют микросейсмические колебания, определяют трехмерные координаты их источников и дополнительно уточняют трехмерную модель резервуара и ориентацию системы трещин. 2. The method according to p. 1, characterized in that during the fracturing process microseismic vibrations are recorded, three-dimensional coordinates of their sources are determined and an additional three-dimensional model of the reservoir and the orientation of the fracture system are specified.
RU2014136780/28A 2014-09-11 2014-09-11 Method for seismic monitoring of process of development of hydrocarbons in water areas RU2602735C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014136780/28A RU2602735C2 (en) 2014-09-11 2014-09-11 Method for seismic monitoring of process of development of hydrocarbons in water areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014136780/28A RU2602735C2 (en) 2014-09-11 2014-09-11 Method for seismic monitoring of process of development of hydrocarbons in water areas

Publications (2)

Publication Number Publication Date
RU2014136780A true RU2014136780A (en) 2016-03-27
RU2602735C2 RU2602735C2 (en) 2016-11-20

Family

ID=55638609

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014136780/28A RU2602735C2 (en) 2014-09-11 2014-09-11 Method for seismic monitoring of process of development of hydrocarbons in water areas

Country Status (1)

Country Link
RU (1) RU2602735C2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655918A (en) * 2017-10-11 2019-04-19 中国石油化工股份有限公司 Ground shallow well micro-seismic monitoring measuring platform station location determines method and system
CN110764139A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time high-order power linear combination positioning method
CN110764148A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Well-ground combined positioning method for anisotropic vector wave field
CN110764136A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Combined positioning method for time-lapse linear combination and nonlinear combination of anisotropic longitudinal and transverse waves
CN110764138A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time nonlinear combined positioning method
CN110764140A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Perforation double-difference anisotropy based longitudinal and transverse wave nonlinear combined positioning method
CN110764137A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave nonlinear combined positioning method based on perforation mixed time difference
CN111257434A (en) * 2020-01-17 2020-06-09 大连理工大学 Knocking device for positioning and correcting microseism of surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085642B (en) * 2017-06-14 2020-05-15 中国石油化工股份有限公司 Anisotropic medium microseism event positioning method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655918A (en) * 2017-10-11 2019-04-19 中国石油化工股份有限公司 Ground shallow well micro-seismic monitoring measuring platform station location determines method and system
CN109655918B (en) * 2017-10-11 2021-06-25 中国石油化工股份有限公司 Method and system for determining position of ground shallow well micro-seismic monitoring observation station
CN110764136A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Combined positioning method for time-lapse linear combination and nonlinear combination of anisotropic longitudinal and transverse waves
CN110764148A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Well-ground combined positioning method for anisotropic vector wave field
CN110764138A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time nonlinear combined positioning method
CN110764140A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Perforation double-difference anisotropy based longitudinal and transverse wave nonlinear combined positioning method
CN110764137A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave nonlinear combined positioning method based on perforation mixed time difference
CN110764139B (en) * 2018-07-27 2021-05-25 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time high-order power linear combination positioning method
CN110764139A (en) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time high-order power linear combination positioning method
CN110764137B (en) * 2018-07-27 2021-08-24 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave nonlinear combined positioning method based on perforation mixed time difference
CN110764148B (en) * 2018-07-27 2021-08-24 中国石油化工股份有限公司 Well-ground combined positioning method for anisotropic vector wave field
CN110764136B (en) * 2018-07-27 2021-09-17 中国石油化工股份有限公司 Combined positioning method for time-lapse linear combination and nonlinear combination of anisotropic longitudinal and transverse waves
CN110764140B (en) * 2018-07-27 2021-09-17 中国石油化工股份有限公司 Perforation double-difference anisotropy based longitudinal and transverse wave nonlinear combined positioning method
CN110764138B (en) * 2018-07-27 2021-09-17 中国石油化工股份有限公司 Anisotropy longitudinal and transverse wave travel time nonlinear combined positioning method
CN111257434A (en) * 2020-01-17 2020-06-09 大连理工大学 Knocking device for positioning and correcting microseism of surface

Also Published As

Publication number Publication date
RU2602735C2 (en) 2016-11-20

Similar Documents

Publication Publication Date Title
RU2014136780A (en) Method for seismic monitoring of hydrocarbon field development in water areas
SA518392073B1 (en) Systems and Methods for Transient-Pressure Testing of Water Injection Wells to Determine Reservoir Damages
MX2018002797A (en) Q-compensated full wavefield inversion.
US20140358510A1 (en) System and method for characterizing uncertainty in subterranean reservoir fracture networks
BR112018002905A2 (en) method for estimating the orthorhombic anisotropy parameters of underground rock layers, computer readable storage system and media
EA201792188A1 (en) IMPROVEMENT IN THE FIELD OF HYDROCARBON PRODUCTION FROM SLATES
SA520411676B1 (en) Enhancing Reservoir Production Optimization Through Integrating Inter-Well Tracers
MX2018005522A (en) Systems and methods for evaluating and optimizing stimulation efficiency using diverters.
EA201500743A1 (en) METHODS OF SEISMIC EXPLORATION WITH SIMULTANEOUS ACTIVATION OF SEISMIC SOURCES AND COLLECTION OF NODE DATA
RU2016127688A (en) DESIGNING A HORIZONTAL WELL FOR A FIELD WITH A PRODUCTIVE LAYER WITH NATURAL CRACKING
EA201370007A1 (en) METHOD AND SYSTEM FOR GEOLOGICAL MAPPING AND MACHINE-READABLE MEDIUM
MX2015015236A (en) Method and apparatus for determining wellbore position.
CA2945472C (en) Fracture treatment analysis based on seismic detection in horizontal and vertical wellbore sections
EA201791217A1 (en) METHOD AND DEVICE FOR LOW-FREQUENCY SEISMIC SURVEY
RU2539745C1 (en) Method for seismic monitoring when developing hydrocarbon deposits at water areas
GB2546046A (en) Structure tensor constrained tomographic velocity analysis
RU2016107117A (en) INFORMATION PROCESSING SYSTEM CONCERNING A WELL OF A WELL IN THE PLACE OF A DEPTH, CORE AND DRILLED BREED
EA201391035A1 (en) METHOD AND SYSTEM FOR UPGRADING THE GEOGENCULAR MODEL
GB2531182A (en) Generating seismic pulses using Piezoelectric devices to map fractures
GB2561486A (en) Semblance-based anisotropy parameter estimation using isotropic depth-migrated common image gathers
MX2019006436A (en) Diving wave illumination using migration gathers.
MX2016007403A (en) Method of exploiting hydrocarbons from a sedimentary basin comprising carbonate rocks, by means of stratigraphic simulation.
RU2013157446A (en) METHOD FOR PLACING SEARCH, EXPLORATION AND OPERATIONAL WELLS ON OIL AND GAS DEPOSITS ON THE BASIS OF MULTI-VARIANT THREE-DIMENSIONAL GEOLOGICAL MODELS
EA201391004A1 (en) METHOD AND SYSTEM FOR DETERMINING THE VERTICAL AMPLITUDE OF BLOCKS OF BLOCKS IN GEOLOGICAL RIPPING
GB2526709A (en) Migration velocity analysis method for vertical seismic profile data