RU2013132991A - METHOD FOR FORECASTING HIDDEN ORE MINING ASSOCIATED WITH GRANITOIDS - Google Patents

METHOD FOR FORECASTING HIDDEN ORE MINING ASSOCIATED WITH GRANITOIDS Download PDF

Info

Publication number
RU2013132991A
RU2013132991A RU2013132991/28A RU2013132991A RU2013132991A RU 2013132991 A RU2013132991 A RU 2013132991A RU 2013132991/28 A RU2013132991/28 A RU 2013132991/28A RU 2013132991 A RU2013132991 A RU 2013132991A RU 2013132991 A RU2013132991 A RU 2013132991A
Authority
RU
Russia
Prior art keywords
density
ore
model
magnetization
magnetic
Prior art date
Application number
RU2013132991/28A
Other languages
Russian (ru)
Other versions
RU2539838C1 (en
Inventor
Валентин Леонидович Хомичев
Олег Гареевич Садур
Николай Иогансович Паули
Original Assignee
Федеральное Государственное Унитарное Предприятие "Сибирский Научно-Исследовательский Институт Геологии, Геофизики И Минерального Сырья"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Сибирский Научно-Исследовательский Институт Геологии, Геофизики И Минерального Сырья" filed Critical Федеральное Государственное Унитарное Предприятие "Сибирский Научно-Исследовательский Институт Геологии, Геофизики И Минерального Сырья"
Priority to RU2013132991/28A priority Critical patent/RU2539838C1/en
Application granted granted Critical
Publication of RU2539838C1 publication Critical patent/RU2539838C1/en
Publication of RU2013132991A publication Critical patent/RU2013132991A/en

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Способ прогноза скрытого оруденения, связанного с гранитоидами, характеризующийся тем, что для перспективных рудоносных участков осуществляют на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок построение «нулевой» глубинной модели, в виде глубинных разрезов, в которых всем выявленным телам присваивают соответствующие интервалы изменений плотностных и магнитных характеристик, после чего путем решения серии обратных задач осуществляют в интерактивном режиме подбор глубинной модели, в процессе которого меняют как форму отдельных тел модели, так и их физические параметры (плотность и намагниченность) до практически полного совпадения расчетных гравитационного и магнитного полей с наблюденными, полученное неоднородное распределение плотности пород и намагниченности интерпретируют, используя эталонные генетические модели рудно-магматических систем, с построением геолого-геофизических разрезов, в которых по резкой смене или по смещению изолиний полей плотности и намагниченности выделяют крупные разломы и области низкоплотных немагнитных пород, как остаточные очаги котектических гранитов (источников флюидов, рудного вещества и энергии), а отходящие от них апофизы оконтуривают, как прогнозируемые зоны рудоотложения.A method for predicting hidden mineralization associated with granitoids, characterized in that for promising ore-bearing areas, a “zero” depth model is constructed in the form of deep sections, using the data on the physical properties of the rocks composing the model section, and materials from small-scale gravity and magnetic exploration surveys which all identified bodies are assigned the appropriate intervals of changes in density and magnetic characteristics, after which, by solving a series of inverse problems, In the interactive mode, the selection of the deep model, during which both the shape of the individual bodies of the model and their physical parameters (density and magnetization) are changed until the calculated gravitational and magnetic fields coincide with the observed ones, the obtained heterogeneous distribution of rock density and magnetization is interpreted using standard genetic models of ore-magmatic systems, with the construction of geological and geophysical sections, in which, according to a sharp change or shift of the isolines of the density and density fields ness isolated major faults and low-density nonmagnetic field rocks as residual foci cotectic granites (sources fluids ore material and energy), and extending from them apophyses contoured as projected ore deposition zone.

Claims (1)

Способ прогноза скрытого оруденения, связанного с гранитоидами, характеризующийся тем, что для перспективных рудоносных участков осуществляют на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок построение «нулевой» глубинной модели, в виде глубинных разрезов, в которых всем выявленным телам присваивают соответствующие интервалы изменений плотностных и магнитных характеристик, после чего путем решения серии обратных задач осуществляют в интерактивном режиме подбор глубинной модели, в процессе которого меняют как форму отдельных тел модели, так и их физические параметры (плотность и намагниченность) до практически полного совпадения расчетных гравитационного и магнитного полей с наблюденными, полученное неоднородное распределение плотности пород и намагниченности интерпретируют, используя эталонные генетические модели рудно-магматических систем, с построением геолого-геофизических разрезов, в которых по резкой смене или по смещению изолиний полей плотности и намагниченности выделяют крупные разломы и области низкоплотных немагнитных пород, как остаточные очаги котектических гранитов (источников флюидов, рудного вещества и энергии), а отходящие от них апофизы оконтуривают, как прогнозируемые зоны рудоотложения. A method for predicting hidden mineralization associated with granitoids, characterized in that for promising ore-bearing areas, a “zero” depth model is constructed in the form of deep sections, using the data on the physical properties of the rocks composing the model section, and materials from small-scale gravity and magnetic exploration surveys which all identified bodies are assigned the appropriate intervals of changes in density and magnetic characteristics, after which, by solving a series of inverse problems, In the interactive mode, the selection of the deep model, during which both the shape of the individual bodies of the model and their physical parameters (density and magnetization) are changed until the calculated gravitational and magnetic fields coincide with the observed ones, the obtained heterogeneous distribution of rock density and magnetization is interpreted using standard genetic models of ore-magmatic systems, with the construction of geological and geophysical sections, in which, according to a sharp change or shift of the isolines of the density and density fields ness isolated major faults and low-density nonmagnetic field rocks as residual foci cotectic granites (sources fluids ore material and energy), and extending from them apophyses contoured as projected ore deposition zone.
RU2013132991/28A 2013-07-16 2013-07-16 Method of predicting blind ore body associated with granitoids RU2539838C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013132991/28A RU2539838C1 (en) 2013-07-16 2013-07-16 Method of predicting blind ore body associated with granitoids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013132991/28A RU2539838C1 (en) 2013-07-16 2013-07-16 Method of predicting blind ore body associated with granitoids

Publications (2)

Publication Number Publication Date
RU2539838C1 RU2539838C1 (en) 2015-01-27
RU2013132991A true RU2013132991A (en) 2015-01-27

Family

ID=53280924

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132991/28A RU2539838C1 (en) 2013-07-16 2013-07-16 Method of predicting blind ore body associated with granitoids

Country Status (1)

Country Link
RU (1) RU2539838C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109711597A (en) * 2018-11-14 2019-05-03 东莞理工学院 A kind of Copper-nickel Sulfide Ore Deposit metallogenic prognosis method based on stratified random forest model
CN114488344A (en) * 2022-02-24 2022-05-13 核工业北京地质研究院 Gravity-magnetic three-dimensional inversion method and system for hydrothermal uranium mineralization environment detection
CN114814978A (en) * 2022-04-15 2022-07-29 中国地质科学院矿产资源研究所 Granite area tungsten-tin ore exploration method based on multiple depth scales

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888176B (en) * 2019-10-25 2021-05-07 东华理工大学 Ore finding method by utilizing ground high-precision gravity measurement
CN110764163B (en) * 2019-11-15 2021-06-08 四川省核工业地质局二八二大队 Pegmatite lithium ore delineation method based on gamma total amount and high-density electrical measurement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2364895C1 (en) * 2007-12-17 2009-08-20 Горный институт Уральского отделения Российской академии наук (ГИ УрО РАН) Method for multicomponent gravimetric modeling of geological medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109711597A (en) * 2018-11-14 2019-05-03 东莞理工学院 A kind of Copper-nickel Sulfide Ore Deposit metallogenic prognosis method based on stratified random forest model
CN114488344A (en) * 2022-02-24 2022-05-13 核工业北京地质研究院 Gravity-magnetic three-dimensional inversion method and system for hydrothermal uranium mineralization environment detection
CN114814978A (en) * 2022-04-15 2022-07-29 中国地质科学院矿产资源研究所 Granite area tungsten-tin ore exploration method based on multiple depth scales
CN114814978B (en) * 2022-04-15 2023-01-31 中国地质科学院矿产资源研究所 Granite area tungsten-tin ore exploration method based on multiple depth scales

Also Published As

Publication number Publication date
RU2539838C1 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
RU2013132991A (en) METHOD FOR FORECASTING HIDDEN ORE MINING ASSOCIATED WITH GRANITOIDS
CN104866653B (en) Method for acquiring underground three-dimensional density structure
EA201591343A1 (en) SYSTEM AND METHOD OF COMPUTATIONAL GEOLOGY
Yandoka et al. Facies analysis, palaeoenvironmental reconstruction and stratigraphic development of the Early Cretaceous sediments (Lower Bima Member) in the Yola Sub-basin, Northern Benue Trough, NE Nigeria
MX2018002023A (en) Global inversion based estimation of anisotropy parameters for orthorhombic media.
RU2014142851A (en) METHOD FOR CONSTRUCTING GEOLOGICAL AND HYDRODYNAMIC MODELS OF DOUBLE ENVIRONMENT OF DEPOSITS OF BAZHENOVSKAYA SUIT
EA201291448A1 (en) PROCESSING OF GEOPHYSICAL DATA
CN104536054A (en) Stripe-shaped iron mine assessment method and device
Aadil et al. 3D geological modeling of Punjab platform, Middle Indus Basin Pakistan through integration of Wireline logs and seismic data
EA201390195A1 (en) SYSTEMS AND METHODS FOR PROCESSING GEOPHYSICAL DATA
AU2017258717A1 (en) FWI with areal and point sources
Park et al. Mineral potential mapping of Gagok Mine using 3D geological modeling
Orekhov Informative importance of geophysical methods for exploration of gold ore mineralization in black shale strata
Qi et al. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling
Qi et al. 3D Geological Model of Fanchang Area Based on Priori Information Constrained: A Case History
ASHRAF Non-seismic Geophysical Prospecting Model of Beiya Gold Mine in Western Yunnan Province (Model Pencarigalian Geofizik Tak Seismik Lombong Emas Beiya di Wilayah Barat Yunnan)
Alekseev et al. The Indication in the Potential Fields of Structures Controlling Diamondiferous Magmatism
Floricich et al. Conditioning Reservoir Model and Aiding Well Planning Using Probabilistic Seismic Inversion in a Central North Sea Field
Oh et al. Exploration criteria for mineral target mapping based on 3D geological modeling in the Taebaek mineralized belt in Korea
Gómez et al. Three Dimensional Geological Modeling using Seismic Inversion in a Reservoir Integrated Study for a Giant Heavy Oil Field: Rubiales Field, Eastern Llanos Basin, Colombia, South America
Kobayashi et al. Construction of a 3D S-wave velocity structure model utilizing passive surface wave method.
Ge Exploration and Modeling using Multiple Geophysical Methods in Hongshigang area, Xinjiang province, China
Laya et al. Digital Outcrop Modeling of an Isolated Carbonate Platform. Stratigraphy and Diagenesis. Bonaire Dutch Caribbean Carbonate Reservoir Analogs
Vela et al. Structure of the Los Bronces-Río Blanco-Los Sulfatos Cu-Mo Porphyry System: Integration of Tectonics and Passive Seismic Tomography to Understand One of the World's Largest Cu Deposit
Wallace et al. Constrained Magnetic Modelling of the Wallaby Gold Deposit, Western Australia

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20200514