RU2011979C1 - Способ определения коэффициента теплообмена термоэлектрических датчиков - Google Patents

Способ определения коэффициента теплообмена термоэлектрических датчиков Download PDF

Info

Publication number
RU2011979C1
RU2011979C1 SU5048705A RU2011979C1 RU 2011979 C1 RU2011979 C1 RU 2011979C1 SU 5048705 A SU5048705 A SU 5048705A RU 2011979 C1 RU2011979 C1 RU 2011979C1
Authority
RU
Russia
Prior art keywords
junction
temperature
sensor
current
thermoelectric
Prior art date
Application number
Other languages
English (en)
Inventor
Ю.А. Скрипник
А.И. Химичева
С.И. Кондрашов
В.Н. Балев
Original Assignee
Киевский технологический институт легкой промышленности
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Киевский технологический институт легкой промышленности filed Critical Киевский технологический институт легкой промышленности
Priority to SU5048705 priority Critical patent/RU2011979C1/ru
Application granted granted Critical
Publication of RU2011979C1 publication Critical patent/RU2011979C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение может быть использовано в измерительной технике для анализа материалов и сред с помощью электрически нагреваемых термоэлектрических датчиков, температура которых определяется изменением коэфициента теплообмена датчика от теплового контакта с анализируемым материалом или средой. Сущность изобретения: рабочий спай термоэлектрического датчика приводят в тепловой контакт с исследуемым материалом или средой, пропускают через него постоянный ток и нагревают до температуры выше температуры исследуемого материала или среды. Затем прерывают ток, протекающий через спай, и через временной интервал, равный 4 - 5 значениям тепловой постоянной времени датчика, измеряют термоэлектродвижущуюся силу на свободных концах терможлектрического датчика. Далее пропускают ток того же значения, но в противоположном направлении, и охлаждают рабочий спай до значения температуры ниже температуры исследуемого материала или среды. При этом измеряют значение термоэлектродвижущей силы на свободных концах через тот же временной интервал, а коэффициент теплообмена определяют по формуле α=2ПJE2/[F(E1-E3)(T1-T0)] , где E1, E2, E3 - значения термоэлектродвижущей силы соответственно после нагрева, без нагрева и после охлаждения спая термоэлектрического датчика; F - поверхность нагрева; П - коэффициент Пельтье, зависящий от материалов термоэлектродов; J - значение тока через спай термоэлектродов; T1 - температура исследуемого материала или среды; T0 - температура свободных концов термоэлектродов. Повышение точности достигается за счет исключения влияния тепла Джоуля и непостоянства коэффициента Зеебека термоэлектродов. 1 ил.

Description

Изобретение относится к анализу материалов и сред с помощью электрически нагреваемых термоэлектрических датчиков, температура которых определяется изменениями коэффициентов теплообмена датчика от теплового контакта с анализируемым материалом или средой и может быть использовано для определения концентрации компонентов газовой среды, скорости потоков жидкости, плотности материалов и веществ и других физических величин, функционально связанных с коэффициентом теплообмена подогревных термоэлектрических датчиков.
Для анализа различных сред и материалов наиболее часто используют проволочные датчики, в которых термопара периодически служит нагревателем (на основе эффекта Пельтье) и термоприемником (с использованием эффекта Зеебека). Экспериментально и теоретически доказано, что для тех диаметров термопар, которые обычно применяются для измерения концентрации, плотности, скорости среды и т. п. лучеиспусканием нагретого тела можно практически пренебречь. Поэтому теплообмен подогревного датчика с окружающей средой носит конвективный характер и определяется в основном теплопроводностью термоэлектродов и теплоотдачей в окружающую среду, в которую помещен термодатчик.
Известен способ определения коэффициента теплообмена термоэлектрических датчиков [1] , основанный на решении уравнения теплопроводности нагретого тока с учетом граничных условий по теплообмену с окружающей средой и получении аналитического выражения для коэффициента теплообмена. Так, коэффициент теплообмена нагретого термоэлектрода в неподвижной газовой среде рассчитывается по формуле
α = 0,5
Figure 00000001
+0,81
Figure 00000002
Re04 [Вт/м2 К] , где d - диаметр электрода;
λ- коэффициент теплопроводности пограничного слоя;
λс - коэффициент теплопроводности газа вдали от электродов.
Для термодатчиков в виде термопары с косвенным подогревом существует зависимость термоЭДС Е термопаpы от скорости v потока в виде
Е = KI2v-n [ B] где К - коэффициент, зависящий от конструкции термоэлектрического преобразователя;
I - сила тока;
n - величина, зависящая от режима потока.
Из последнего выражения видно, что коэффициент теплообмена от нагретой термопары в основном определяется скоростью потока, что и позволяет использовать электрически нагреваемые термодатчики для измерения скорости и других физических величин.
Однако расчетному способу определения коэффициента теплообмена датчика присуща низкая точность из-за сложности учета всех условий теплообмена, тепловых потерь на элементах крепления и характера аэродинамических процессов на рабочем участке датчика.
Известен способ определения коэффициента теплообмена термоэлектрических датчиков [2] , заключающийся в электрическом нагреве чувствительного элемента датчика, измерении мощности тепловыделения, температуры поверхности чувствительного элемента датчика, температуры исследуемой среды и определении коэффициента теплоотдачи αпо формуле
α =
Figure 00000003
, где ΔQ - тепловой поток от поверхности чувствительного элемента датчика;
Т1 - температура чувствительного элемента датчика;
Т2 - температура исследуемой среды;
F - площадь поверхности чувствительного элемента датчика.
Этот способ также не обеспечивает высокую точность определения коэффициента из-за больших погрешностей измерения малых тепловых потоков существующими микрокалориметрами. Измерение тепловыделения по рассеиваемой электрической мощности затруднено из-за непостоянства соотношения электрических сопротивлений электродов и рабочего спая термопары, а также неравномерности выделения тепла по чувствительному спаю термопары и в прилегающих участках термоэлектродов. Эти погрешности особенно велики в полупроводниковых термопарах, имеющих высокоомные, но нестабильные термо- элементы.
Наиболее близким к изобретению по технической сущности является способ определения коэффициента теплообмена термоэлектрических датчиков [3] , заключающийся в том, что приводят рабочий спай термоэлектрического датчика в тепловой контакт с исследуемым материалом или средой, нагревают его до значения температуры выше температуры окружающей среды, измеряют значение термоэлектродвижущей силы на свободных концах термоэлектрического датчика, компенсируют тепловыделение в спае эффектом Пельтье от электрического тока, пропускаемого через спай термоэлектрического датчика, а коэффициент теплообмена рассчитывают по формуле
α =
Figure 00000004
, где Qк(I) - компенсирующий тепловой поток за счет эффекта Пельтье, пропорциональный току I;
F - поверхность теплообмена рабочего спая датчика;
Т1 - температура нагретого спая, пропорциональная термоэлектродвижущей силе;
То - начальная температура спая датчика.
Тепловыделение или поглощение тепла в исследуемой среде определяется по значению и направлению тока через спай термодатчика. Связь между электрическим током и тепловым потоком определяется или градуировкой, или расчетным путем при известных параметрах термоэлектрического датчика (или термобатарей). Однако известному способу присуща и невысокая точность. Это объясняется влиянием тепла Джоуля на компенсирующий тепловой поток, которое с одной стороны нарушает линейность между компенсирующей мощностью от эффекта Пельтье и электрическим током, с другой стороны, неконтролируемо подогревают рабочий спай от части объемно выделяющегося тепла в электродах датчика. Кроме того, на точность измерения температуры нагретого спая существенное влияние оказывает непостоянство коэффициента Зеебека для используемых термоэлектродов и зависимость его от температуры спая.
Цель изобретения - повышение точности определения коэффициента теплообмена термоэлектрических датчиков, нагреваемых за счет эффекта Пельтье в спае термоэлектрода с исключением влияния тепла Джоуля и непостоянства коэффициента Зеебека термоэлектродов.
Цель достигается тем, что в известном способе определения коэффициента теплообмена, который заключается в том, что приводят рабочий спай термоэлектрического датчика в тепловой контакт с исследуемым материалом или средой, пропускают постоянный ток через спай и нагревают его до значения температуры выше температуры исследуемого материала или среды, измеряют значение термоэлектродвижущейся силы на свободных концах термоэлектрического датчика, измеряют температуру свободных концов и температуру исследуемого материала или среды, определяют коэффициент теплообмена спая датчика по математическому выражению, дополнительно введены следующие операции: прерывают ток через спай термоэлектрического датчика; измеряют термоэлектродвижущую силу на его свободных концах через временной интервал, равный 4-5 значениям тепловой постоянной времени датчика; пропускают ток того же значения, но в противоположном направлении через спай, и охлаждают его до значения температуры ниже температуры исследуемого материала или среды; измеряют значение термоэлектродвижущейся силы на свободных концах через тот же временной интервал, а коэффициент теплообмена α вычисляют по математическому выражению
α =
Figure 00000005
, где Е1, Е2, Е3 - значения термоэлектродвижущей силы соответственно после нагрева, без нагрева и после охлаждения спая термоэлектрического датчика;
F - поверхность нагрева или охлаждения спая термоэлектродов;
П - коэффициент Пельтье, зависящий от материалов термоэлектродов;
I - значение тока через спай термоэлектродов;
Т1 - температура исследуемого материала или среды;
То - температура свободных концов термоэлектродов.
Введенные операции позволяют получить дополнительную информацию о теплообмене рабочего спая термоэлек- трического датчика с исследуемым материалом или средой. Операции измерения термоэлектродвижущей силы при прерывании тока через спай и измененном направлении протекающего тока позволяют расчетным путем исключить влияние тепла Джоуля на теплообмен спая датчика в исследуемой среде. Расчет коэффициента теплообмена по предложенному математическому выражению исключает непостоянство коэффициента Зеебека на получаемый результат. Измерения термоэлектродвижущей силы после каждого переключения, спустя временные интервалы, равные 4-5 значениям тепловых постоянных времени спая, позволяют разделить эффекты Пельтье и Зеебека во времени и осуществить высокоточные измерения термоэлектродвижущей силы, отражающей процессы нагрева и охлаждения спая датчика. Указанные отличия позволяют решить поставленную задачу на изобретательском уровне.
На чертеже представлена схема устройства для определения коэффициента теплообмена термоэлектрических датчиков.
Устройство содержит измерительную камеру 1, термоэлектрический датчик 2, состоящий из двух термоэлектродов 3, 4 и рабочего спая 5, двухполюсного переключателя 6 на три положения, источник 7 постоянного напряжения, миллиамперметр 8, переменный резистор 9 и милливольтметр 10.
Входы двухполюсного переключателя 6 соединены со свободными концами термоэлектродов датчика, рабочий спай 5 которого помещен в измерительную камеру 1. Противоположные выходы переключателя 6 соединены между собой и подключены к выходам источника 7 постоянного напряжения через миллиамперметр 8 и переменный резистор 9. К средним выходам переключателя 6 подключен милливольтметр 10.
Сущность способа определения коэффициента теплоотдачи термоэлектрических датчиков заключается в следующем.
Рабочий спай термоэлектрического датчика приводят в тепловой контакт с исследуемым материалом или средой. Пропускают через спай постоянный ток в таком направлении, чтобы выделить нагрев спая до температуры
Т2 = Т1 + ΔТ, (1) где Т1 - температура исследуемого материала или среды;
ΔТ - температура перегрева спая датчика.
Измеряют температуру Т1 исследуемого материала или среды. Температура перегрева датчика определяется суммарной рассеиваемой электрической мощностью в спае и прилегающих участках термоэлектродов, а также теплообменом с окружающей средой
ΔT =
Figure 00000006
, (2) где П - коэффициент Пельтье, зависящий от материалов термоэлектродов;
I - ток, протекающий через спай термоэлектродов;
r - сопротивление термоэлектродов;
К - коэффициент, учитывающий долю тепла Джоуля, поступающего в спай;
α- коэффициент теплообмена, зависящий от теплопроводности исследуемого материала или среды, а также скорости среды, если она подвижна;
F - поверхность теплообмена спая термоэлектродов.
Измеряют установившееся значение термоЭДС Е1 на свободных концах термоэлектродов датчика и силу тока I, протекающего через спай. Для этого измерение термоЭДС Е1 проводят после включения тока через временной интервал, равный 4-5 значениям тепловой постоянной времени датчика. После указанного интервала, измеряемая термоЭДС равна
E1= S
Figure 00000007
T1+
Figure 00000008
_T
Figure 00000009
, (3) где S - чувствительность термоэлектрического датчика, определяемая коэффициентом Зеебека;
То - температура окружающего воздуха, в котором расположены свободные концы термоэлектродов.
Измеряют температуру То окружающего воздуха. Силу тока I выбирают из условия перегрева рабочего спая датчика на 5-10 К и допустимой плотности тока в термоэлектродах датчика.
Затем прерывают ток через спай (I = 0) и измеряют после указанного интервала установившееся значение термоЭДС
Е2 = S(Т1 - То) . (4)
Далее пропускают через спай тот же ток I, но в противоположном направлении. В результате охлаждения спая термоэлектродов датчика его термоЭДС принимает значение
E3= S
Figure 00000010
T1+
Figure 00000011
-T
Figure 00000012
(5)
Измеряют после указанного временного интервала установившееся значение термоЭДС Е3.
После проведения измерений термоЭДС определяют разность термоЭДС нагретого и охлажденного спая датчика
E1-E3= 2S
Figure 00000013
. (6)
Вычисляют относительную разность термоЭДС (6) с учетом значения ЭДС Е2 из выражения (4)
Figure 00000014
=
Figure 00000015
(7)
Из равенства (7) определяют коэффициент теплообмена спая термоэлектрического датчика с исследуемым материалом или средой
α =
Figure 00000016
[Вт/м2·К] (8)
По измеренным значениям термоЭДС Е1, Е2, Е3, силе тока I, пропускаемого через спай, и температурам Т1 и То вычисляют коэффициент теплообмена α. Как видно из расчетного выражения (8) полученное значение α не зависит от количества тепла Джоуля, поступающего в спай термоэлектродов датчика, и чувствительности S датчика, определяемой коэффициентом Зеебека термоэлектродов. Указанные преимущества позволяют опpеделять коэффициент теплообмена датчиков с полупроводниковыми электродами n- и р-типа, которые обладают более высокой чувствительностью при анализе состава и свойств различных материалов и сред.
В качестве примера реализации способа рассмотрим работу устройства, изображенного на чертеже.
Анализируемую смесь пропускают через измерительную камеру 1, где размещен термоэлектрический датчик 2. Свободные концы термоэлектродов 3 и 4 выведены из камеры и их температура определяется температурой Тоокружающего воздуха. Рабочий спай 5 датчика находится при температуре исследуемой смеси Т1. Температуры То и Т1 измеряются одним из известных способов (измерители температуры на чертеже не показаны).
Вначале двухполюсный переключатель 6 устанавливают в верхнее положение. Ток, вызывающий дополнительный нагрев спая 5, протекает от источника 7 напряжения, а сила тока I через спай измеряется миллиамперметром 8 и регулируется переменным резистором 9. После нагрева спая 5 переключатель 6 переводится в среднее положение и производится отсчет значения термоЭДС Е1 подогретого спая 5 по милливольтметру 10. Затем через временной интервал, равный 4-5 значениям тепловой постоянной времени датчика 2, производится следующий отсчет термоЭДС Е2, который соответствует ненагретому спаю 5, находящемуся при температуре Т1.
После снятия отсчета двухполюсный переключатель 6 переводят в нижнее положение, при котором через спай 5 пpотекает тот же ток I, но в противоположном направлении. После охлаждения спая 5 до установившейся температуры, что достигается после временного интервала в 4-5 значений тепловой постоянной времени датчика 2, вновь переключатель 6 переводится в среднее положение и сразу же производится отсчет значения термоЭДС Е3охлажденного спая по милливольтметру 10. По результатам измерений термоЭДС Е1, Е2, Е3, силы тока I и значениям температур То и Т1 по формуле (8) вычисляется коэффициент теплообменаα, по которому определяют состав и свойства анализируемой смеси.
При экспериментальных исследованиях способа в качестве термоэлектрического датчика использовалась термопара типа ЗТХК с диаметром термоэлектродов 1,2 мм, которая помещалась в воздушную среду с относительной влажностью 80% . Для перегрева рабочего спая при То = 293 К и Т1 = 473 К (Е2 = 6,51 мВ) на 7 К (Е1 = 6,63 мВ) через его спай пропускался ток I = 0,8 А. Изменение направления тока на противоположное вызывало охлаждение рабочего спая на 6,2 К (Е3 = 6,41 мВ). Рабочему спаю термопары придавалась шаровидная форма диаметром 2,5 мм, что создавало поверхность теплообмена с площадью ≈2,85˙10-6 м2. Вычисление по формуле (8) с учетом коэффициента Пельтье П = 0,0065 В позволило определить коэффициент теплообмена
α =
Figure 00000017
=
Figure 00000018
= 549,9 Вт/м2 К
Изменение относительной влажности воздуха в измерительной камере от 40 до 98% обуславливало изменение коэффициента теплообмена от αмин = 274,9 Вт/м2К до αмакс = 646,2 Вт/м2К . При этом значение коэффициента теплообмена не зависит от относительного уровня выделяемого или поглощенного тепла Пельтье в спае термопары и тепловых помех из-за выделяющегося тепла Джоуля в термоэлектродах.

Claims (1)

  1. СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛООБМЕНА ТЕРМОЭЛЕКТРИЧЕСКИХ ДАТЧИКОВ, заключающийся в том, что приводят рабочий спай термоэлектрического датчика в тепловой контакт с исследуемым материалом или средой, пропускают постоянный ток через спай и нагревают его до значения температуры выше температуры исследуемого материала или среды, измеряют значение термоэлектродвижущейся силы на свободных концах термоэлектрического датчика, измеряют температуру свободных концов и температуру исследуемого материала или среды, определяют коэффициент теплообмена спая датчика по математическому выражению, отличающийся тем, что прерывают ток через спай термоэлектрического датчика, измеряют термоэлектродвижущую силу на его свободных концах через временной интервал, равный 4 - 5 значениям тепловой постоянной времени датчика, пропускают ток того же значения, но в противоположном направлении через спай и охлаждают его до значения температуры ниже температуры исследуемого материала или среды, измеряют значение термоэлектродвижущей силы на свободных концах через тот же временной интервал, а коэффициент теплообмена α вычисляют по математическому выражению
    α=
    Figure 00000019
    ,
    где E1, E2, E3 - значения термоэлектродвижущей силы соответственно после нагрева, без нагрева и после охлаждения спая термоэлектрического датчика;
    F - поверхность нагрева или охлаждения спая термоэлектродов;
    П - коэффициент Пельтье, зависящий от материалов термоэлектродов;
    I - значение тока через спай термоэлектродов;
    T1 - температура исследуемого материала или среды;
    T0 - температура свободных концов термоэлектродов.
SU5048705 1992-06-22 1992-06-22 Способ определения коэффициента теплообмена термоэлектрических датчиков RU2011979C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5048705 RU2011979C1 (ru) 1992-06-22 1992-06-22 Способ определения коэффициента теплообмена термоэлектрических датчиков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5048705 RU2011979C1 (ru) 1992-06-22 1992-06-22 Способ определения коэффициента теплообмена термоэлектрических датчиков

Publications (1)

Publication Number Publication Date
RU2011979C1 true RU2011979C1 (ru) 1994-04-30

Family

ID=21607499

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5048705 RU2011979C1 (ru) 1992-06-22 1992-06-22 Способ определения коэффициента теплообмена термоэлектрических датчиков

Country Status (1)

Country Link
RU (1) RU2011979C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879817A (zh) * 2020-07-31 2020-11-03 江苏大学 一种基于帕尔贴效应测量表面对流传热系数的系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879817A (zh) * 2020-07-31 2020-11-03 江苏大学 一种基于帕尔贴效应测量表面对流传热系数的系统及方法
CN111879817B (zh) * 2020-07-31 2023-08-18 江苏大学 一种基于帕尔贴效应测量表面对流传热系数的系统及方法

Similar Documents

Publication Publication Date Title
Iervolino et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1
US4579462A (en) Dew point measuring apparatus
Min et al. A novel principle allowing rapid and accurate measurement of a dimensionless thermoelectric figure of merit
US3417617A (en) Fluid stream temperature sensor system
JPH0479573B2 (ru)
RU2011979C1 (ru) Способ определения коэффициента теплообмена термоэлектрических датчиков
US6593760B2 (en) Apparatus for measuring thermal properties and making thermomechanical modification on sample surface with peltier tip
JP3468300B2 (ja) 薄膜熱電物質の熱的及び電気的特性を測定する方法及び装置
US3514998A (en) D.c. circuit for operating asymmetric thermopile
Woodbury et al. Z-meters
JPS627983B2 (ru)
RU2017089C1 (ru) Способ определения температуры
RU2124734C1 (ru) Способ определения коэффициента пельтье неоднородной электрической цепи и устройство для его осуществления
JPS5923369B2 (ja) 零位法熱流計
SU1741036A1 (ru) Устройство дл определени теплопроводности материалов
RU2069329C1 (ru) Способ определения давления газа и устройство для его осуществления
SU934336A1 (ru) Устройство дл измерени термо-эдс металлов и сплавов
RU2124707C1 (ru) Способ определения температуры контактного взаимодействия при трении и резании
JPH0143903B2 (ru)
SU1636753A1 (ru) Способ измерени коэффициента теплопроводности полупроводникового образца
Skripnik et al. Methods and devices for measuring the Peltier coefficient of an inhomogeneous electric circuit
CA1251948A (en) Improvements relating to solid state anemometers and temperature gauges
RU2008660C1 (ru) Способ определения влажности материалов
Godts et al. Peltier Effect for Measurement of Fluid Thermal Property-Application for Designing New Thermal Sensors
SU798594A1 (ru) Прибор дл измерени скоростижидКОСТи и гАзА