RU2010133229A - Универсальный узел рекуператора для отработавших газов газовой турбины - Google Patents

Универсальный узел рекуператора для отработавших газов газовой турбины Download PDF

Info

Publication number
RU2010133229A
RU2010133229A RU2010133229/06A RU2010133229A RU2010133229A RU 2010133229 A RU2010133229 A RU 2010133229A RU 2010133229/06 A RU2010133229/06 A RU 2010133229/06A RU 2010133229 A RU2010133229 A RU 2010133229A RU 2010133229 A RU2010133229 A RU 2010133229A
Authority
RU
Russia
Prior art keywords
aforementioned
pipe
heating surface
direct
row
Prior art date
Application number
RU2010133229/06A
Other languages
English (en)
Other versions
RU2483265C2 (ru
Inventor
Томас П. МАСТРОНАРД (US)
Томас П. МАСТРОНАРД
Original Assignee
Альстом Текнолоджи Лтд (Ch)
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд (Ch), Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд (Ch)
Publication of RU2010133229A publication Critical patent/RU2010133229A/ru
Application granted granted Critical
Publication of RU2483265C2 publication Critical patent/RU2483265C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

1. Рекуператор, включающий в себя: ! канал для нагретого газа; ! впускной трубопровод; ! выпускной трубопровод; а также ! прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа; причем вышеуказанная прямоточная поверхность нагрева образована множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов, причем каждый из множества первых однорядных трубно-коллекторных узлов содержит множество первых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них, а также содержит впускной коллектор, соединенный с вышеупомянутым впускным трубопроводом, причем каждый из вышеуказанного множества вторых однорядных трубно-коллекторных узлов включает множество вторых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них из соответствующих вышеупомянутых первых генераторных теплообменных труб; а также содержит выпускной коллектор, который соединен с вышеуказанным выпускным трубопроводом, причем каждый из вышеуказанных впускных коллекторов соединен с вышеупомянутым впускным трубопроводом соответствующей по меньшей мере одной трубой из множества первых соединительных труб, а каждый из вышеуказанных выпускных коллекторов соединен с вышеупомянутым выпускным трубопроводом соответствующей по меньшей мере одной трубой из множества вторых соединительных труб, причем каждая из вышеуказанных теплообменных труб каждого из вышеупомянутых первых и вторых однорядных трубно-коллек

Claims (22)

1. Рекуператор, включающий в себя:
канал для нагретого газа;
впускной трубопровод;
выпускной трубопровод; а также
прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа; причем вышеуказанная прямоточная поверхность нагрева образована множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов, причем каждый из множества первых однорядных трубно-коллекторных узлов содержит множество первых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них, а также содержит впускной коллектор, соединенный с вышеупомянутым впускным трубопроводом, причем каждый из вышеуказанного множества вторых однорядных трубно-коллекторных узлов включает множество вторых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них из соответствующих вышеупомянутых первых генераторных теплообменных труб; а также содержит выпускной коллектор, который соединен с вышеуказанным выпускным трубопроводом, причем каждый из вышеуказанных впускных коллекторов соединен с вышеупомянутым впускным трубопроводом соответствующей по меньшей мере одной трубой из множества первых соединительных труб, а каждый из вышеуказанных выпускных коллекторов соединен с вышеупомянутым выпускным трубопроводом соответствующей по меньшей мере одной трубой из множества вторых соединительных труб, причем каждая из вышеуказанных теплообменных труб каждого из вышеупомянутых первых и вторых однорядных трубно-коллекторных узлов имеет внутренний диаметр, который меньше, чем внутренний диаметр любой из вышеуказанного множества первых соединительных труб и любой из вышеуказанного множества вторых соединительных труб.
2. Рекуператор по п.1, отличающийся тем, что поток нагретого газа проходит в практически горизонтальном направлении.
3. Рекуператор по п.1, отличающийся тем, что вышеупомянутой текучей средой является сжатый воздух.
4. Рекуператор по п.1, отличающийся тем, что по меньшей мере одна труба из вышеупомянутого множества вторых теплообменных труб, соединенных с вышеуказанным множеством вторых однорядных трубно-коллекторных узлов, нагревается сильнее, чем вышеуказанное множество первых теплообменных труб, связанных с вышеуказанным множеством первых однорядных трубно-коллекторных узлов.
5. Рекуператор по п.1, отличающийся тем, что вышеуказанный впускной трубопровод имеет внутренний диаметр больше, чем внутренний диаметр каждого из вышеупомянутых впускных коллекторов; а вышеуказанный выпускной трубопровод имеет внутренний диаметр больше, чем внутренний диаметр каждого из вышеупомянутых выпускных коллекторов.
6. Рекуператор по п.1, отличающийся тем, что вышеуказанная прямоточная поверхность нагрева является первой прямоточной поверхностью нагрева, вышеуказанный впускной трубопровод является первым впускным трубопроводом, вышеуказанный выпускной трубопровод является первым выпускным трубопроводом, а также содержащий: вторую прямоточную поверхность нагрева, расположенную в вышеупомянутом канале для нагретого газа, причем вышеуказанная вторая прямоточная поверхность нагрева образована другим множеством первых и вторых однорядных трубно-коллекторных узлов, причем каждый из вышеупомянутого другого множества первых и вторых однорядных трубно-коллекторных узлов включает соответственно множество первых и вторых теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них, причем каждый из вышеупомянутого другого множества первых однорядных трубно-коллекторных узлов содержит впускной коллектор, соединенный с вышеупомянутым вторым впускным трубопроводом, а каждый из вышеуказанного другого множества вторых однорядных трубно-коллекторных узлов содержит выпускной коллектор, соединенный с вышеупомянутым вторым выпускным трубопроводом,
причем первая прямоточная поверхность нагрева находится в сообщении по текучей среде со второй прямоточной поверхностью нагрева за счет соединения первого выпускного трубопровода со вторым впускным трубопроводом.
7. Рекуператор по п.6, отличающийся тем, что вышеуказанная вторая прямоточная поверхность нагрева нагревается сильнее, чем вышеуказанная первая прямоточная поверхность нагрева.
8. Рекуператор по п.1, отличающийся тем, что каждая из вышеуказанного множества вторых теплообменных труб, связанных с вышеуказанным множеством вторых однорядных трубно-коллекторных узлов, находится в сообщении по текучей среде с соответствующей вышеупомянутой первой теплообменной трубой из вышеуказанного множества первых теплообменных труб, связанных с вышеуказанным множеством первых однорядных трубно-коллекторных узлов, за счет верхней части прямоточной поверхности нагрева.
9. Рекуператор по п.1, отличающийся тем, что верхняя часть прямоточной поверхности нагрева включает в себя множество первых и вторых общих коллекторов, соединенных с соответствующим рядом труб из вышеупомянутых первых и вторых генераторных теплообменных труб соответственно, причем первый общий коллектор из вышеуказанного множества первых общих коллекторов находится в сообщении по текучей среде с соответствующим вторым общим коллектором из вышеуказанного множества вторых общих коллекторов третьей соединительной трубы.
10. Рекуператор по п.1, отличающийся тем, что вышеупомянутый рекуператор является воздушным рекуператором с регенерацией тепла.
11. Система накопления энергии с помощью сжатого воздуха, которая включает в себя:
каверну для хранения сжатого воздуха;
силовую установку, содержащую ротор и один или несколько турбодетандеров; а также
систему, обеспечивающую вышеуказанную силовую установку вышеуказанным сжатым воздухом из вышеупомянутой каверны и включающую в себя рекуператор для предварительного нагрева вышеупомянутого сжатого воздуха перед его поступлением в вышеуказанные один или несколько турбодетандеров, и первый клапанный механизм, который управляет потоком предварительно нагретого воздуха от вышеупомянутого рекуператора к вышеуказанной силовой установке, причем вышеупомянутый рекуператор включает в себя:
канал для нагретого газа, через который поток нагретого газа проходит в направлении, противоположном потоку сжатого воздуха;
впускной трубопровод;
выпускной трубопровод; а также
прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа; причем вышеуказанная прямоточная поверхность нагрева образована множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов, причем каждый из множества первых однорядных трубно-коллекторных узлов включает множество первых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них, а также содержит впускной коллектор, соединенный с вышеупомянутым впускным трубопроводом, причем каждый из вышеуказанного множества вторых однорядных трубно-коллекторных узлов включает множество вторых генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них из соответствующих вышеупомянутых первых генераторных теплообменных труб; а также содержит выпускной коллектор, который соединен с вышеуказанным выпускным трубопроводом, причем каждый из вышеуказанных впускных коллекторов соединен с вышеупомянутым впускным трубопроводом соответствующей по меньшей мере одной трубой из множества первых соединительных труб, а каждый из вышеуказанных выпускных коллекторов соединен с вышеупомянутым выпускным трубопроводом соответствующей по меньшей мере одной трубой из множества вторых соединительных труб, причем каждая из вышеуказанных теплообменных труб каждого из вышеупомянутых первых и вторых однорядных трубно-коллекторных узлов имеет внутренний диаметр, который меньше, чем внутренний диаметр любой из вышеуказанного множества первых соединительных труб и любой из вышеуказанного множества вторых соединительных труб.
12. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что поток нагретого газа проходит в практически горизонтальном направлении.
13. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что вышеупомянутой текучей средой является сжатый воздух.
14. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что по меньшей мере одна труба из вышеупомянутого множества вторых теплообменных труб, соединенных с вышеуказанным множеством вторых однорядных трубно-коллекторных узлов, нагревается сильнее, чем вышеуказанное множество первых теплообменных труб, соединенных с вышеуказанным множеством первых однорядных трубно-коллекторных узлов.
15. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что вышеуказанный впускной трубопровод имеет внутренний диаметр больше, чем внутренний диаметр любого из вышеупомянутых впускных коллекторов; а вышеуказанный выпускной трубопровод имеет внутренний диаметр больше, чем внутренний диаметр любого из вышеупомянутых выпускных коллекторов.
16. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что вышеуказанная прямоточная поверхность нагрева является первой прямоточной поверхностью нагрева, вышеуказанный впускной трубопровод является первым впускным трубопроводом, вышеуказанный выпускной трубопровод является первым выпускным трубопроводом, а также включающий: вторую прямоточную поверхность нагрева, расположенную в вышеупомянутом канале для нагретого газа, причем вышеуказанная вторая прямоточная поверхность нагрева образована другим множеством первых и вторых однорядных трубно-коллекторных узлов, причем каждый из вышеупомянутого другого множества первых и вторых однорядных трубно-коллекторных узлов включает соответственно множество первых и вторых теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды, причем каждый из вышеупомянутого другого множества первых однорядных трубно-коллекторных узлов содержит впускной коллектор, соединенный с вышеупомянутым вторым впускным трубопроводом, а каждый из вышеуказанного другого множества вторых однорядных трубно-коллекторных узлов содержит выпускной коллектор, соединенный с вышеупомянутым вторым выпускным трубопроводом,
причем вышеупомянутая первая прямоточная поверхность нагрева находится в сообщении по текучей среде со второй прямоточной поверхностью нагрева за счет соединения первого выпускного трубопровода со вторым впускным трубопроводом.
17. Система накопления энергии с помощью сжатого воздуха по п.16, отличающаяся тем, что вышеуказанная вторая прямоточная поверхность нагрева нагревается сильнее, чем вышеуказанная первая прямоточная поверхность нагрева.
18. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что каждая из вышеуказанного множества вторых теплообменных труб, связанных с вышеуказанным множеством вторых однорядных трубно-коллекторных узлов, находится в сообщении по текучей среде с соответствующей вышеупомянутой первой теплообменной трубой из вышеуказанного множества первых теплообменных труб, связанных с вышеуказанным множеством первых однорядных трубно-коллекторных узлов посредством верхней части прямоточной поверхности нагрева.
19. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что верхняя часть прямоточной поверхности нагрева включает в себя множество первых и вторых общих коллекторов, соединенных с соответствующим рядом труб из вышеупомянутых первых и вторых генераторных теплообменных труб соответственно, причем первый общий коллектор из вышеуказанного множества первых общих коллекторов находится в сообщении по текучей среде с соответствующим вторым общим коллектором из вышеуказанного множества вторых общих коллекторов третьей соединительной трубы.
20. Система накопления энергии с помощью сжатого воздуха по п.11, отличающаяся тем, что вышеупомянутый рекуператор является воздушным рекуператором с регенерацией тепла.
21. Устройство для нагрева сжатого воздуха, выполненное с возможностью рекуперации энергии отработавших газов газовой турбины широкого применения, причем данная установка включает в себя:
канал для нагретого газа;
впускной трубопровод;
выпускной трубопровод; а также
прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа; причем вышеуказанная прямоточная поверхность нагрева образована множеством однорядных трубно-коллекторных узлов, причем каждый из упомянутого множества однорядных трубно-коллекторных узлов включает множество генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды через них, а также содержит впускной коллектор, соединенный с вышеупомянутым впускным трубопроводом, причем каждый из вышеуказанного множества однорядных трубно-коллекторных узлов соединен с вышеупомянутым выпускным трубопроводом, причем каждый из вышеуказанных впускных коллекторов соединен с вышеупомянутым впускным трубопроводом соответствующей по меньшей мере одной трубой из множества соединительных труб, причем каждая из вышеуказанных теплообменных труб каждого из вышеупомянутых однорядных трубно-коллекторных узлов имеет внутренний диаметр, который меньше, чем внутренний диаметр любой из вышеуказанного множества соединительных труб.
22. Устройство по п.21, отличающееся тем, что данный канал для нагретого газа; данный впускной трубопровод; данный выпускной трубопровод; а также данная прямоточная поверхность нагрева образуют рекуператор.
RU2010133229/06A 2008-01-07 2009-01-06 Универсальный узел рекуператора для отработавших газов газовой турбины RU2483265C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/970,197 2008-01-07
US11/970,197 US7963097B2 (en) 2008-01-07 2008-01-07 Flexible assembly of recuperator for combustion turbine exhaust
PCT/US2009/030193 WO2009089202A1 (en) 2008-01-07 2009-01-06 Flexible assembly of recuperator for combustion turbine exhaust

Publications (2)

Publication Number Publication Date
RU2010133229A true RU2010133229A (ru) 2012-02-20
RU2483265C2 RU2483265C2 (ru) 2013-05-27

Family

ID=40512232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010133229/06A RU2483265C2 (ru) 2008-01-07 2009-01-06 Универсальный узел рекуператора для отработавших газов газовой турбины

Country Status (11)

Country Link
US (1) US7963097B2 (ru)
EP (1) EP2229572B1 (ru)
KR (1) KR101233761B1 (ru)
CN (1) CN101910778B (ru)
AU (1) AU2009204331B2 (ru)
CA (1) CA2710877C (ru)
DK (1) DK2229572T3 (ru)
ES (1) ES2461869T3 (ru)
IL (1) IL206561A (ru)
RU (1) RU2483265C2 (ru)
WO (1) WO2009089202A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10001272B2 (en) * 2009-09-03 2018-06-19 General Electric Technology Gmbh Apparatus and method for close coupling of heat recovery steam generators with gas turbines
US20110146293A1 (en) * 2009-12-23 2011-06-23 General Electric Company Method for connecting a starting means to a turbomachine
US20130048245A1 (en) * 2010-05-20 2013-02-28 Nooter/Eriksen, Inc. Heat Exchanger Having Improved Drain System
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
US10274192B2 (en) 2012-01-17 2019-04-30 General Electric Technology Gmbh Tube arrangement in a once-through horizontal evaporator
MX349702B (es) 2012-01-17 2017-08-08 General Electric Technology Gmbh Un método y aparato para conectar secciones de un evaporador horizontal directo.
US9938895B2 (en) 2012-11-20 2018-04-10 Dresser-Rand Company Dual reheat topping cycle for improved energy efficiency for compressed air energy storage plants with high air storage pressure
TWI507648B (zh) * 2012-12-13 2015-11-11 Ind Tech Res Inst 地溫熱交換系統及其地溫熱能發電與地溫熱泵系統
ES2573511T3 (es) * 2013-10-28 2016-06-08 Abb Technology Ag Intercambiador de calor de aire-aire
US10145626B2 (en) * 2013-11-15 2018-12-04 General Electric Technology Gmbh Internally stiffened extended service heat recovery steam generator apparatus
US10006369B2 (en) * 2014-06-30 2018-06-26 General Electric Company Method and system for radial tubular duct heat exchangers
US10168083B2 (en) * 2014-07-11 2019-01-01 Hangzhou Sanhua Research Institute Co., Ltd. Refrigeration system and heat exchanger thereof
JP6351494B2 (ja) * 2014-12-12 2018-07-04 日立ジョンソンコントロールズ空調株式会社 空気調和機
US20170219246A1 (en) * 2016-01-29 2017-08-03 Reese Price Heat Extractor to Capture and Recycle Heat Energy within a Furnace
US10323868B2 (en) 2016-02-08 2019-06-18 Trane International Inc. Multi-coil microchannel evaporator
US10773346B2 (en) * 2016-06-10 2020-09-15 General Electric Technology Gmbh System and method for assembling a heat exchanger
US10502493B2 (en) * 2016-11-22 2019-12-10 General Electric Company Single pass cross-flow heat exchanger
US10670349B2 (en) * 2017-07-18 2020-06-02 General Electric Company Additively manufactured heat exchanger
US10472993B2 (en) * 2017-12-04 2019-11-12 General Electric Company Output manifold for heat recovery steam generations
US11060421B2 (en) * 2017-12-04 2021-07-13 General Electric Company System to aggregate working fluid for heat recovery steam generators
US11047625B2 (en) 2018-05-30 2021-06-29 Johnson Controls Technology Company Interlaced heat exchanger
EP3842723A1 (en) * 2019-12-23 2021-06-30 Hamilton Sundstrand Corporation Two-stage fractal heat exchanger
US11892250B2 (en) * 2021-05-14 2024-02-06 Rtx Corporation Heat exchanger tube support
US11859910B2 (en) 2021-05-14 2024-01-02 Rtx Corporation Heat exchanger tube support
US20240159172A1 (en) * 2022-11-14 2024-05-16 Doosan Enerbility Co., Ltd. Once-through heat exchanger and heat recovery steam generator including the same
US20240159470A1 (en) * 2022-11-14 2024-05-16 Doosan Enerbility Co., Ltd. Once-through heat exchanger and heat recovery steam generator including the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1884778A (en) * 1928-05-16 1932-10-25 Babcock & Wilcox Co Steam reheater
US3101930A (en) * 1958-09-10 1963-08-27 Huet Andre Tubular heat exchanger
JPS5187852A (ru) * 1974-12-24 1976-07-31 Breda Backer Rueb Maschf
CH599521A5 (ru) * 1975-10-06 1978-05-31 Sulzer Ag
CH659855A5 (de) * 1981-11-16 1987-02-27 Bbc Brown Boveri & Cie Luftspeicher-kraftwerk.
SU1444589A1 (ru) * 1987-01-22 1988-12-15 М. С. Гаман и А. М. Гаман Рекуператор
CN88210298U (zh) * 1988-03-16 1988-12-21 鞍山市化工二厂 新型高温空气预热器
AU659170B2 (en) 1991-06-17 1995-05-11 Electric Power Research Institute, Inc. Power plant utilizing compressed air energy storage and saturation
CN2147500Y (zh) * 1993-02-25 1993-11-24 中国五环化学工程公司 一种分馏、反应、结晶用换热装置
US5778675A (en) * 1997-06-20 1998-07-14 Electric Power Research Institute, Inc. Method of power generation and load management with hybrid mode of operation of a combustion turbine derivative power plant
US5934063A (en) * 1998-07-07 1999-08-10 Nakhamkin; Michael Method of operating a combustion turbine power plant having compressed air storage
DE50108781D1 (de) * 2001-08-16 2006-04-13 Siemens Ag Gas- und Luftturbinenanlage
US6694722B2 (en) * 2001-08-17 2004-02-24 Alstom Technology Ltd Recuperator for thermal power installation
EP1293978A1 (en) * 2001-09-10 2003-03-19 STMicroelectronics S.r.l. Coding/decoding process and device, for instance for disk drives
JP2003090690A (ja) 2001-09-18 2003-03-28 Hitachi Ltd 積層型熱交換器及び冷凍サイクル
US6848259B2 (en) * 2002-03-20 2005-02-01 Alstom Technology Ltd Compressed air energy storage system having a standby warm keeping system including an electric air heater
RU43954U1 (ru) * 2004-06-21 2005-02-10 Петров Геннадий Иванович Теплообменник
US20060130517A1 (en) * 2004-12-22 2006-06-22 Hussmann Corporation Microchannnel evaporator assembly
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
CN2869733Y (zh) * 2005-08-23 2007-02-14 上海星四机械成套设备有限公司 浮头式箱形空气加热器

Also Published As

Publication number Publication date
ES2461869T3 (es) 2014-05-21
DK2229572T3 (da) 2014-05-12
IL206561A0 (en) 2010-12-30
RU2483265C2 (ru) 2013-05-27
CN101910778B (zh) 2013-07-17
EP2229572B1 (en) 2014-03-12
IL206561A (en) 2014-01-30
CN101910778A (zh) 2010-12-08
KR20100105759A (ko) 2010-09-29
AU2009204331A1 (en) 2009-07-16
CA2710877A1 (en) 2009-07-16
CA2710877C (en) 2012-07-31
EP2229572A1 (en) 2010-09-22
KR101233761B1 (ko) 2013-02-15
US7963097B2 (en) 2011-06-21
US20090173072A1 (en) 2009-07-09
AU2009204331B2 (en) 2011-11-24
WO2009089202A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
RU2010133229A (ru) Универсальный узел рекуператора для отработавших газов газовой турбины
RU2013106154A (ru) Система утилизации отходящего тепла с частичной рекуперацией
RU2012105425A (ru) Термоэлектрическое устройство с трубными пучками
TWI645104B (zh) 化石燃料發電設備
JP2010038162A (ja) 複合サイクル発電プラントにおいて燃料を予熱するためのシステム及びアセンブリ
CN202195715U (zh) 一种带乏汽换热系统的电厂汽水系统
CN106989429A (zh) 电厂乏汽余热回收供热系统
CN112097242A (zh) 余热锅炉的多管排过热器
CN109506246A (zh) 一种两级联合加热的水媒式暖风器
CN206608968U (zh) 一种电厂热能回收系统
US20180066548A1 (en) Combined cycle power plant having an integrated recuperator
CN209431447U (zh) 一种两级联合加热的水媒式暖风器
CN103245058B (zh) 一种微正压燃烧组合冷却节能锅炉
CN206861870U (zh) 一种有高温水回用的高效节能燃气锅炉
CN205897183U (zh) 一种用于电厂锅炉的干湿混合烟气换热系统
CN212274249U (zh) 一种脱硝烟气余热利用系统
CN205897182U (zh) 一种用于电厂锅炉的湿式烟气换热系统
CN219693285U (zh) 烟气余热利用系统
CN205261605U (zh) 一种燃煤锅炉的烟气余热利用系统
CN211650418U (zh) 一种利用工业余热采暖的供热系统
CN216384250U (zh) 一种汽泵加热锅炉进风连接结构
CN213748016U (zh) 高效烟气换热装置
CN217356938U (zh) 一种锅炉烟气冷却器排烟温度调整装置
RU50606U1 (ru) Паротурбинная надстройка над газотурбинной установкой
CN213748017U (zh) 螺旋扁管换热模块

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210107