RU2009140063A - METHOD FOR PRODUCING POROUS CARBON MATERIAL BASED ON THERMAL EXTENDED GRAPHITE OXIDE AND MATERIAL - Google Patents
METHOD FOR PRODUCING POROUS CARBON MATERIAL BASED ON THERMAL EXTENDED GRAPHITE OXIDE AND MATERIAL Download PDFInfo
- Publication number
- RU2009140063A RU2009140063A RU2009140063/03A RU2009140063A RU2009140063A RU 2009140063 A RU2009140063 A RU 2009140063A RU 2009140063/03 A RU2009140063/03 A RU 2009140063/03A RU 2009140063 A RU2009140063 A RU 2009140063A RU 2009140063 A RU2009140063 A RU 2009140063A
- Authority
- RU
- Russia
- Prior art keywords
- graphite oxide
- heat treatment
- metal oxides
- transition metal
- porous carbon
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Catalysts (AREA)
Abstract
1. Способ получения пористого углеродного композиционного материала на основе терморасширенного оксида графита с включениями наночастиц металлов или оксидов металлов, включающий смешение частиц оксида графита и соли металла при температуре ниже температуры разложения оксида графита с получением промежуточного реакционного продукта и термическую обработку упомянутого реакционного продукта, отличающийся тем, что частицы оксида графита используют в виде суспензии, в качестве соли металла используют, по меньшей мере, одну комплексную соль, содержащую катионный комплекс переходного металла, при этом частицы оксида графита в суспензии до смешивания подвергают диспергированию путем воздействия ультразвуком, а перед термической обработкой осуществляют сушку промежуточного реакционного продукта. ! 2. Способ по п.1, отличающийся тем, что смешивание оксида графита и упомянутой комплексной соли осуществляют под воздействием ультразвука. !3. Способ по п.1, отличающийся тем, что термообработку проводят при 250-1000°C. ! 4. Способ по п.1 отличающийся тем, что термообработку проводят в инертной или окислительной атмосфере. ! 5. Пористый углеродный композиционный материал на основе терморасширенного оксида графита с включениями наночастиц металлов или оксидов металлов, отличающийся тем, что получен в соответствии с любым из предшествующих пунктов формулы, в качестве металлов или оксидов металлов содержит наночастицы переходных металлов или оксидов переходных металлов с размером, не превышающим 30 нм и характеризуется удельной площадью поверхности, не менее 500 м2/г. ! 6. Материал по п.5, отличающийся тем, что содержит наноч� 1. A method of obtaining a porous carbon composite material based on thermally expanded graphite oxide with inclusions of metal nanoparticles or metal oxides, comprising mixing particles of graphite oxide and a metal salt at a temperature below the decomposition temperature of graphite oxide to obtain an intermediate reaction product and heat treatment of said reaction product, characterized in that the particles of graphite oxide are used in the form of a suspension, at least one complex ol containing a cationic transition metal complex, wherein the graphite oxide particles in the slurry is subjected to dispersion mixing by sonication, but prior to heat treatment by drying the intermediate reaction product. ! 2. The method according to claim 1, characterized in that the mixing of graphite oxide and said complex salt is carried out under the influence of ultrasound. ! 3. The method according to claim 1, characterized in that the heat treatment is carried out at 250-1000 ° C. ! 4. The method according to claim 1, characterized in that the heat treatment is carried out in an inert or oxidizing atmosphere. ! 5. A porous carbon composite material based on thermally expanded graphite oxide with inclusions of metal nanoparticles or metal oxides, characterized in that it is obtained in accordance with any of the preceding claims, as metals or metal oxides, contains transition metal nanoparticles or transition metal oxides with a size of not exceeding 30 nm and is characterized by a specific surface area of at least 500 m2 / g. ! 6. The material according to claim 5, characterized in that it contains a nanoch
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009140063/03A RU2426709C2 (en) | 2009-10-30 | 2009-10-30 | Procedure for production of porous carbonic material on base of thermally expanded graphite oxide and material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009140063/03A RU2426709C2 (en) | 2009-10-30 | 2009-10-30 | Procedure for production of porous carbonic material on base of thermally expanded graphite oxide and material |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009140063A true RU2009140063A (en) | 2011-05-10 |
RU2426709C2 RU2426709C2 (en) | 2011-08-20 |
Family
ID=44732200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009140063/03A RU2426709C2 (en) | 2009-10-30 | 2009-10-30 | Procedure for production of porous carbonic material on base of thermally expanded graphite oxide and material |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2426709C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722309A2 (en) * | 2011-06-16 | 2014-04-23 | Inha-Industry Partnership Institute | Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen |
RU2583099C1 (en) * | 2014-10-17 | 2016-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) | Method of producing activated finely dispersed graphite preparation for coating on superfine glass fibres |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2568425C1 (en) * | 2014-09-18 | 2015-11-20 | Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") | Method of saturation of porous work pieces with metal oxides |
RU2576637C1 (en) * | 2014-10-07 | 2016-03-10 | Виктор Дмитриевич Ерошенко | Method of producing composite material based on modified thermally expanded graphite |
RU2660232C1 (en) * | 2016-06-15 | 2018-07-10 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) | Nickel-graphene hydrogenation catalyst and method of its production |
-
2009
- 2009-10-30 RU RU2009140063/03A patent/RU2426709C2/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722309A2 (en) * | 2011-06-16 | 2014-04-23 | Inha-Industry Partnership Institute | Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen |
EP2722309A4 (en) * | 2011-06-16 | 2014-11-12 | Inha Ind Partnership Inst | Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen |
RU2583099C1 (en) * | 2014-10-17 | 2016-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) | Method of producing activated finely dispersed graphite preparation for coating on superfine glass fibres |
Also Published As
Publication number | Publication date |
---|---|
RU2426709C2 (en) | 2011-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance | |
Yuan et al. | Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B | |
Pudukudy et al. | Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes | |
Alves et al. | Green synthesis and characterization of biosilica produced from sugarcane waste ash | |
Ghassemi et al. | In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti 3 C 2 and formation of carbon-supported TiO 2 | |
Esmaeili et al. | Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation | |
Barbera et al. | Low-temperature graphitization of amorphous carbon nanospheres | |
Moshtaghioun et al. | Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating | |
Chandrasekar et al. | Role of SiOx on the photoluminescence properties of β-SiC | |
CN105384164B (en) | High-specific surface area hierarchical porous structure fold graphene and preparation method thereof | |
Ding et al. | Growth of SiC nanowires on wooden template surface using molten salt media | |
RU2009140063A (en) | METHOD FOR PRODUCING POROUS CARBON MATERIAL BASED ON THERMAL EXTENDED GRAPHITE OXIDE AND MATERIAL | |
Bai et al. | Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution | |
Bai et al. | Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source | |
Chen et al. | Synthesis of zirconium carbide (ZrC) nanoparticles covered with graphitic “windows” by pulsed plasma in liquid | |
Mahto et al. | Single step synthesis of sulfonic group bearing graphene oxide: a promising carbo-nano material for biodiesel production | |
Zhao et al. | Dealloying induced N-doping in spindle-like porous rutile TiO2 for enhanced visible light photocatalytic activity | |
Ding et al. | Preparation and characterisation of porous biomorphic SiC/C ceramic from molten salt | |
Moshtaghioun et al. | A study on the effects of silica particle size and milling time on synthesis of silicon carbide nanoparticles by carbothermic reduction | |
Huang et al. | Fabrication of reduced graphene oxide/metal (Cu, Ni, Co) nanoparticle hybrid composites via a facile thermal reduction method | |
Ghosh et al. | A facile soft-chemical synthesis of cube-shaped mesoporous CuO with microcarpet-like interior | |
JP5248054B2 (en) | Method for producing spherical alumina particles | |
JP2015523694A5 (en) | ||
Yu et al. | Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollow microspheres | |
Khomand et al. | Green synthesis of nanostructured SiCs by using natural biopolymers (guar, tragacanth, Arabic, and xanthan gums) for oxidative desulfurization of model fuel |