RU2009104123A - METHOD FOR DETERMINING SOIL TEMPERATURE BY DEPTH OF FREEZING AT HIGH LEVEL OF GROUND WATER - Google Patents
METHOD FOR DETERMINING SOIL TEMPERATURE BY DEPTH OF FREEZING AT HIGH LEVEL OF GROUND WATER Download PDFInfo
- Publication number
- RU2009104123A RU2009104123A RU2009104123/03A RU2009104123A RU2009104123A RU 2009104123 A RU2009104123 A RU 2009104123A RU 2009104123/03 A RU2009104123/03 A RU 2009104123/03A RU 2009104123 A RU2009104123 A RU 2009104123A RU 2009104123 A RU2009104123 A RU 2009104123A
- Authority
- RU
- Russia
- Prior art keywords
- soil
- depth
- freezing
- determined
- penetration
- Prior art date
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
1. Способ определения температуры грунта по глубине промерзания характеризуется тем, что на проектируемой для строительства объекта территории, при выполнении инженерно-геологических изысканий, определяют тип грунта, его влажность, влажность на границе пластичности, число пластичности, плотность сухого грунта для слоев в пределах сезонного промерзания грунта, затем находят расчетное значение проникания 0°С в грунт требуемой обеспеченностью под снежным покровом, или без него, по формуле ! , ! где и - соответственно, расчетные величины глубины проникания 0°С в грунт под снежным покровом или без него, определенные по многолетним наблюдениям на посту гидрометеослужбы для данного населенного пункта, требуемой по расчетам обеспеченностью, м; ! df,c и df,0 - то же, соответственно, расчетные значения глубины проникания 0°С в грунт, под снежным покровом и без него, на застроенной территории, м; ! Kdf - коэффициент, учитывающий отличие влажности, плотности сухого грунта и его теплопроводности. на застроенной территории от грунта на посту наблюдения, определяемый по формуле ! , ! где λf и - соответственно, теплопроводность мерзлого грунта на посту наблюдения и для проектируемой территории населенного пункта, Вт/(м·t°С), определяемые по табл.3 Приложения 1 [4]; ! и qf - соответственно, количество холода, необходимое для промораживания свободной воды в 1 м3 грунта, соответственно, для поста наблюдения и проектируемой территории, Дж/м3, определяемое по Приложению 1 [4], после этого, распределение отрицательной температуры грунта по глубине промерзания определяют графически, для чего, сначала, по известным значениям распределения отриц 1. The method of determining the temperature of the soil by the depth of freezing is characterized by the fact that the type of soil, its moisture, humidity at the boundary of plasticity, the number of plasticity, the density of dry soil for the layers within the seasonal freezing of the soil, then find the calculated value of 0 ° C penetration into the soil with the required security under the snow cover, or without it, according to the formula! ! where and are, respectively, the calculated values of the depth of penetration of 0 ° C into the soil under or without snow cover, determined from long-term observations at the hydrometeorological service for this settlement, required by the security calculations, m; ! df, c and df, 0 - the same, respectively, the calculated values of the depth of penetration of 0 ° C into the ground, under and without snow cover, in a built-up area, m; ! Kdf - coefficient taking into account the difference in humidity, density of dry soil and its thermal conductivity. on the built-up area from the ground at the observation post, determined by the formula! ! where λf and are, respectively, the thermal conductivity of frozen soil at the observation post and for the designed territory of the settlement, W / (m · t ° С), determined according to Table 3 of Appendix 1 [4]; ! and qf are, respectively, the amount of cold required to freeze free water in 1 m3 of soil, respectively, for the observation post and projected area, J / m3, determined according to Appendix 1 [4], after that, the distribution of negative soil temperature over the freezing depth is determined graphically, for which, first, according to the known distribution values, negative
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009104123/03A RU2405887C2 (en) | 2009-02-06 | 2009-02-06 | Method for detection of soil temperature by depth of frost penetration at high level of ground water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009104123/03A RU2405887C2 (en) | 2009-02-06 | 2009-02-06 | Method for detection of soil temperature by depth of frost penetration at high level of ground water |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009104123A true RU2009104123A (en) | 2010-08-20 |
RU2405887C2 RU2405887C2 (en) | 2010-12-10 |
Family
ID=46305113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009104123/03A RU2405887C2 (en) | 2009-02-06 | 2009-02-06 | Method for detection of soil temperature by depth of frost penetration at high level of ground water |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2405887C2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113515877A (en) * | 2021-03-11 | 2021-10-19 | 中国市政工程中南设计研究总院有限公司 | Method and device for optimizing temperature characteristics of frozen soil body of oversized shield section based on Gaussian process machine learning |
CN113588912A (en) * | 2021-04-29 | 2021-11-02 | 中国科学院西北生态环境资源研究院 | Simulation system and method for on-site simulation of frozen soil environment |
CN117054315A (en) * | 2023-10-13 | 2023-11-14 | 东北林业大学 | Frozen soil permeability coefficient measurement system |
CN117540132A (en) * | 2024-01-09 | 2024-02-09 | 中国科学院精密测量科学与技术创新研究院 | Permafrost active layer thickness estimation method based on star-earth observation |
-
2009
- 2009-02-06 RU RU2009104123/03A patent/RU2405887C2/en not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113515877A (en) * | 2021-03-11 | 2021-10-19 | 中国市政工程中南设计研究总院有限公司 | Method and device for optimizing temperature characteristics of frozen soil body of oversized shield section based on Gaussian process machine learning |
CN113515877B (en) * | 2021-03-11 | 2023-12-29 | 中国市政工程中南设计研究总院有限公司 | Super-large shield section frozen soil body temperature characteristic optimizing method and device based on Gaussian process machine learning |
CN113588912A (en) * | 2021-04-29 | 2021-11-02 | 中国科学院西北生态环境资源研究院 | Simulation system and method for on-site simulation of frozen soil environment |
CN113588912B (en) * | 2021-04-29 | 2023-10-20 | 中国科学院西北生态环境资源研究院 | Simulation system and method for simulating frozen soil environment on site |
CN117054315A (en) * | 2023-10-13 | 2023-11-14 | 东北林业大学 | Frozen soil permeability coefficient measurement system |
CN117054315B (en) * | 2023-10-13 | 2024-01-09 | 东北林业大学 | Frozen soil permeability coefficient measurement system |
CN117540132A (en) * | 2024-01-09 | 2024-02-09 | 中国科学院精密测量科学与技术创新研究院 | Permafrost active layer thickness estimation method based on star-earth observation |
CN117540132B (en) * | 2024-01-09 | 2024-04-02 | 中国科学院精密测量科学与技术创新研究院 | Permafrost active layer thickness estimation method based on star-earth observation |
Also Published As
Publication number | Publication date |
---|---|
RU2405887C2 (en) | 2010-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mongkon et al. | Cooling performance and condensation evaluation of horizontal earth tube system for the tropical greenhouse | |
Dashtseren et al. | Temperature regimes of the active layer and seasonally frozen ground under a forest‐steppe mosaic, Mongolia | |
Narjary et al. | Impact of rainfall variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana | |
RU2009104123A (en) | METHOD FOR DETERMINING SOIL TEMPERATURE BY DEPTH OF FREEZING AT HIGH LEVEL OF GROUND WATER | |
Palsaniya et al. | Now it is water all the way in Garhkundar-Dabar watershed of drought-prone semi-arid Bundelkhand, India | |
Dzhamalov et al. | Current changes in water resources in Lena River basin | |
Becker et al. | Green roof heat transfer and thermal performance analysis | |
Mata et al. | Evaluation of evapotranspiration | |
Khoroshaev et al. | Heterotrophic soil respiration response to the summer precipitation regime and different depths of snow cover in a temperate continental climate | |
RU2010149010A (en) | METHOD FOR DETERMINING FROZEN GROUND LEARNING DURING FREEZING OF SEASONALLY PROTECTING LAYER | |
Yasinskii et al. | Effect of regional climate variations and economic activity on changes in the hydrological regime of watersheds and small-river runoff | |
Disher | Characterizing the hydrological function of treed bogs in the zone of discontinuous permafrost | |
Almasraf et al. | Effects of Subsurface Water Retention Technology on Crop Coefficient and Crop Evapotranspiration of Eggplant | |
Grab | Rock‐surface temperatures of basalt in the drakensberg alpine environment, lesotho | |
Viglietti et al. | Snow gliding and loading under two different forest stands: a case study in the north-western Italian Alps | |
RU2009108599A (en) | REMOTE RADIOPHYSICAL METHOD FOR DETERMINING PHYSICAL CLAY IN SOIL | |
Dickson et al. | Time‐Lapse Imaging in Polar Environments | |
Pociask-Karteczka et al. | Long-term changes and periodicity of ice phenomena in the high mountain Lake Morskie Oko (Tatra Mountains, Western Carpathians) | |
Aboufayed | Soil moisture content in hill-filed side slope | |
IWATA | Soil water movement during periods of soil freezing and snowmelt in an agricultural field on volcanic ash soil | |
Baek et al. | Water-energy-food nexus of concave green-roof in SNU | |
Bonaccorsi et al. | Monitoring Surface Moisture of Crater-fill Sediment in Extreme hydroclimatic conditions (Ubehebe Volcanic Field, Death Valley, California). | |
Charlesworth et al. | Combining Sustainable Drainage to manage stormwater with renewable heat from the ground; monitoring of the Hanson Ecohouse, Watford, UK | |
Haryani et al. | MODEL SIMULASI BANJIR MENGGUNAKAN DATA PENGINDERAAN JAUH, STUDI KASUS KABUPATEN SAMPANG DENGAN MENGGUNAKAN METODE GRIDDED SURFACE SUBSURFACE HYDROLOGIC ANALYSIS (FOOD SIMULATION MODEL USING REMOTE SENSING DATA, CASE STUDY OF SAMPANG REGION USING GRIDDED SURFACE HYDROLOGIC ANALYSIS METHOD) | |
Lönnqvist et al. | Evaluating the plant cover of northern Sweden's green roofs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120207 |